

What is SQL?

SQL stands for Structured Query Language. It is used for storing and managing data in Relational Database
Management System (RDBMS).
It is a standard language for Relational Database System. It enables a user to create, read, update and delete
relational databases and tables.
All the RDBMS like MySQL, Informix, Oracle, MS Access and SQL Server use SQL as their standard database
language.
SQL allows users to query the database in a number of ways, using English-like statements.

When an SQL command is executing for any RDBMS, then the system figure out the best way to carry out the
request and the SQL engine determines that how to interpret the task.

In the process, various components are included. These components can be optimization Engine, Query engine,
Query dispatcher, classic, etc.

All the non-SQL queries are handled by the classic query engine, but SQL query engine won't handle logical files.
Advantages of SQL?

High speed
No coding needed
Well defined standards
Portability
Interactive language
Multiple data view

What is SQL Datatype?

SQL Datatype is used to define the values that a column can contain.
Every column is required to have a name and data type in the database table.

SQL Commands

SQL commands are instructions. It is used to communicate with the database.
It is also used to perform specific tasks, functions, and queries of data.
SQL can perform various tasks like create a table, add data to tables, drop the
table, modify the table, set permission for users.
Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL, and DQL.

What is DDL?
Data Definition Language helps you to define the database structure or

schema. Let’s learn about DDL commands with syntax.
Five types of DDL commands in SQL are:

CREATE
CREATE statements is used to define the database structure schema:
Syntax:
CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);

For example:
Create database university;
Create table students;
Create view for_students;

DROP
Drops commands remove tables and databases from RDBMS.
Syntax
DROP TABLE ;

For example:
Drop object_type object_name;
Drop database university;
Drop table student;

ALTER
Alters command allows you to alter the structure of the database.
Syntax:
To add a new column in the table
ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify an existing column in the table:
ALTER TABLE MODIFY(COLUMN DEFINITION....);

For example:
Alter table guru99 add subject varchar;

TRUNCATE:
This command used to delete all the rows from the table and free the
space containing the table.
Syntax:
TRUNCATE TABLE table_name;

Example:
TRUNCATE table students;

What is Data Manipulation Language?
Data Manipulation Language (DML) allows you to modify the database
instance by inserting, modifying, and deleting its data. It is responsible for
performing all types of data modification in a database.
There are three basic constructs which allow database program and user
to enter data and information are:

Here are some important DML commands in SQL:
INSERT
UPDATE
DELETE

INSERT:
This is a statement is a SQL query. This command is used to insert data
into the row of a table.
Syntax:
INSERT INTO TABLE_NAME (col1, col2, col3,.... col N)
VALUES (value1, value2, value3, valueN);
Or
INSERT INTO TABLE_NAME
VALUES (value1, value2, value3, valueN);

For example:
INSERT INTO students (RollNo, FIrstName, LastName) VALUES ('60', 'Tom', Erichsen');

UPDATE:
This command is used to update or modify the value of a column in the
table.
Syntax:
UPDATE table_name SET [column_name1= value1,...column_nameN = valueN] [WHERE CONDITION]

For example:
UPDATE students
SET FirstName = 'Jhon', LastName= 'Wick'
WHERE StudID = 3;

DELETE:
This command is used to remove one or more rows from a table.

Syntax:
DELETE FROM table_name [WHERE condition];

For example:
DELETE FROM students
WHERE FirstName = 'Jhon';

What is DCL?
DCL (Data Control Language) includes commands like GRANT and
REVOKE, which are useful to give “rights & permissions.” Other
permission controls parameters of the database system.

Examples of DCL commands:
Commands that come under DCL:
Grant
Revoke

Grant:
This command is use to give user access privileges to a database.
Syntax:
GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

For example:
GRANT SELECT ON Users TO'Tom'@'localhost;

Revoke:
It is useful to back permissions from the user.
Syntax:
REVOKE privilege_nameON object_nameFROM {user_name |PUBLIC |role_name}

For example:
REVOKE SELECT, UPDATE ON student FROM BCA, MCA;

What is TCL?
Transaction control language or TCL commands deal with the transaction
within the database.

Commit
This command is used to save all the transactions to the database.
Syntax:
Commit;

For example:
DELETE FROM Students
WHERE RollNo =25;
COMMIT;

Rollback
Rollback command allows you to undo transactions that have not already
been saved to the database.
Syntax:
ROLLBACK;

Example:
DELETE FROM Students
WHERE RollNo =25;

SAVEPOINT
This command helps you to sets a savepoint within a transaction.
Syntax:
SAVEPOINT SAVEPOINT_NAME;

Example:
SAVEPOINT RollNo;

What is DQL?
Data Query Language (DQL) is used to fetch the data from the database.
It uses only one command:

SELECT:
This command helps you to select the attribute based on the condition
described by the WHERE clause.
Syntax:
SELECT expressions
FROM TABLES
WHERE conditions;

For example:
SELECT FirstName
FROM Student
WHERE RollNo > 15;

Views in SQL
Views in SQL are considered as a virtual table. A view also contains rows and columns.
To create the view, we can select the fields from one or more tables present in the database.
A view can either have specific rows based on certain condition or all the rows of a table.

Creating view
A view can be created using the CREATE VIEW statement. We can create a view from a single
table or multiple tables.
Syntax:
CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE condition;

Creating View from a single table
In this example, we create a View named DetailsView from the table Student_Detail.
Query:
CREATE VIEW DetailsView AS
SELECT NAME, ADDRESS
FROM Student_Details
WHERE STU_ID < 4;
Just like table query, we can query the view to view the data.
SELECT * FROM DetailsView;

Creating View from multiple tables
View from multiple tables can be created by simply include multiple tables in the SELECT statement.
In the given example, a view is created named MarksView from two tables Student_Detail and
Student_Marks.
Query:
CREATE VIEW MarksView AS
SELECT Student_Detail.NAME, Student_Detail.ADDRESS, Student_Marks.MARKS
FROM Student_Detail, Student_Mark
WHERE Student_Detail.NAME = Student_Marks.NAME;
To display data of View MarksView:
SELECT * FROM MarksView;

4. Deleting View
A view can be deleted using the Drop View statement.
Syntax
DROP VIEW view_name;
Example:
If we want to delete the View MarksView, we can do this as:
DROP VIEW MarksView;

SQL INDEX
The Index in SQL is a special table used to speed up the searching of the data in the database tables.
It also retrieves a vast amount of data from the tables frequently. The INDEX requires its own space
in the hard disk.
The index concept in SQL is same as the index concept in the novel or a book.
It is the best SQL technique for improving the performance of queries. The drawback of using
indexes is that they slow down the execution time of UPDATE and INSERT statements. But they have
one advantage also as they speed up the execution time of SELECT and WHERE statements.
In SQL, an Index is created on the fields of the tables. We can easily build one or more indexes on a
table. The creation and deletion of the Index do not affect the data of the database.

Create an INDEX
In SQL, we can easily create the Index using the following CREATE Statement:
CREATE INDEX Index_Name ON Table_Name (Column_Name);
Here, Index_Name is the name of that index that we want to create, and Table_Name is the name
of the table on which the index is to be created. The Column_Name represents the name of the
column on which index is to be applied.
If we want to create an index on the combination of two or more columns, then the following syntax
can be used in SQL:
CREATE INDEX Index_Name ON Table_Name (column_name1, column_name2,, column_na
meN);
Example for creating an Index in SQL:
Let's take an Employee table:

Emp_Id Emp_Name Emp_Salary Emp_City Emp_State

1001 Akshay 20000 Noida U.P

1002 Ram 35000 Jaipur Rajasthan

1003 Shyam 25000 Gurgaon Haryana

1004 Yatin 30000 Lucknow U.P

The following SQL query creates an Index 'Index_state' on the Emp_State column of
the Employee table.
CREATE INDEX index_state ON Employee (Emp_State);
Suppose we want to create an index on the combination of the Emp_city and
the Emp_State column of the above Employee table. For this, we have to use the following query:
CREATE INDEX index_city_State ON Employee (Emp_City, Emp_State);

Create UNIQUE INDEX
Unique Index is the same as the Primary key in SQL. The unique index does not allow selecting those
columns which contain duplicate values.
This index is the best way to maintain the data integrity of the SQL tables.
Syntax for creating the Unique Index is as follows:
CREATE UNIQUE INDEX Index_Name ON Table_Name (Column_Name);
Example for creating a Unique Index in SQL:
Let's take the above Employee table. The following SQL query creates the unique index
index_salary on the Emp_Salary column of the Employee table.
CREATE UNIQUE INDEX index_salary ON Employee (Emp_Salary);

Rename an INDEX
We can easily rename the index of the table in the relational database using the ALTER command.
Syntax:
ALTER INDEX old_Index_Name RENAME TO new_Index_Name;
Example for Renaming the Index in SQL:
The following SQL query renames the index 'index_Salary' to 'index_Employee_Salary' of the
above Employee table:
ALTER INDEX index_Salary RENAME TO index_Employee_Salary;

Remove an INDEX
An Index of the table can be easily removed from the SQL database using the DROP command. If you
want to delete an index from the data dictionary, you must be the owner of the database or have
the privileges for removing it.
Syntaxes for Removing an Index in MySQL database:
ALTER TABLE Table_Name DROP INDEX Index_Name;

Example for removing an Index in SQL:
Suppose we want to remove the above 'index_Salary' from the SQL database. For this, we have to
use the following SQL query:
DROP INDEX index_salary;

Alter an INDEX
An index of the table can be easily modified in the relational database using the ALTER command.
ALTER INDEX Index_Name ON Table_Name REBUILD;

What Is PL/SQL

PL/SQL is a fusion of SQL with procedural traits of programming languages. It was launched by
Oracle to upgrade the features of SQL. PL SQL is considered as one of the important languages inside
the Oracle database. It is primarily an extension of SQL.
This programming language was brought into the market by Oracle Corporation with the thought of
extending SQL and Oracle databases. It is known as Procedural Language extensions to the

Structured Query Language.
SQL is generally used for modifying and querying information in Relational Database Management
Systems (RDBMS). PL SQL comes to plug in the shortcomings of SQL and enhances the characteristics
of SQL.

Basic Syntax Of PL/SQL

PL SQL is structured in logical blocks of code. Each block has multiple subsections comprising

of the following:
Declaration: This section begins with the DECLARE keyword. It is not considered as the required one
and has variables, subprograms, and so on.
Executable Commands: This section begins with BEGIN and END keywords respectively. It is
considered a required one and contains PL/SQL statements. It consists of at least one executable line
of code.
Exception Handling: This section begins with the keyword EXCEPTION. It comprises the types of
exceptions that the code will handle.
Begin: This is the keyword used for pointing to the execution block. It is required in a PL/SQL code
where actual business logic is described.
End: This is the keyword used to determine the end of the block of code.

Structure of PL/SQL block:

[DECLARE]
<declaration statements>;
[BEGIN]
<Execution statements>;
[EXCEPTION]
<Exception statements>;
END;
A sample code using the above block structure is given below.
DECLARE
 msg varchar (40):= 'Software Testing Help – PL/SQL series';

 BEGIN
 dbms_output.put_line(msg);

 END;
/
Output of the above code should be.

We need to add ‘/’ at the start of the first blank line after the last code statement to execute the
block of code from the SQL command line.

PL/SQL Identifiers
PL SQL identifiers include variables, constants, procedures, cursors, and so on. Their length should
not be more than thirty characters and is case insensitive. A keyword in PLSQL cannot be used as an
identifier.
PL/SQL Delimiters
These are basically symbols having certain characteristics. Some of the common delimiters are +, -,
@, =, ||, <<>>, (,), –, <, >, <=, >=, %. There are two types of delimiters: simple and compound
symbols.
Simple symbols are enlisted in the table below:
Sl. No. Simple Symbols Significance
1 . Component selector
2 / Operator division
3 * Operator multiplication
4 - Operator negation
5 + Operator addition
6 ; End of statement
7 @ Remote access indicator
8 > Greater than
9 < Lesser than
10 = Relational operator
11 " Quoted identifier
12 , Item separator
13 (List delimiter
14) List delimiter
15 : Host variable indicator
16 % Attribute indicator
17 ' Delimiter for character string
Compound symbols are enlisted in the table below:
Sl. No. Compound Symbols Significance

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2020/07/8block-structure-output.png

Sl. No. Compound Symbols Significance
1 || Operator for concatenation
2 ** Operator for exponentiation
3 << Delimiter begin
4 >> Delimiter end
5 => Operator for association
6 := Operator for assignment
7 .. Operator for range
8 /* multi-line comment indicator for begin
9 */ multi-line comment indicator for end
10 <> Not equality operator
11 >= Greater than equal to operator
12 <= Less than equal to operator
13 != Not equality operator
14 ~= Not equality operator
15 ^= Not equality operator
16 - - Single line comment delimiter

PL/SQL Comments
PLSQL code includes comments that explain the intent of the code. PL/SQL has both multiple lines
and single-line comments. The single-line comments begin with delimiter double hyphen — and
double line comments start with /* and end with */.
Sample Code snippet is given below:
DECLARE
 -- Variable declaration

 msg varchar(30):= 'Software Test';
BEGIN

 /*
 * PL/SQL executable output

 */
 dbms_output.put_line(msg);

END;
/
The output of the above code should be:

MySQL Cursor
In MySQL, Cursor can also be created. Following are the steps for creating a cursor.

1. Declare Cursor
A cursor is a select statement, defined in the declaration section in MySQL.
Syntax
DECLARE cursor_name CURSOR FOR
Select statement;
Parameter:
cursor_name: name of the cursor
select_statement: select query associated with the cursorFullscreen

2. Open Cursor
After declaring the cursor the next step is to open the cursor using open statement.
Syntax
Open cursor_name;
Parameter:
cursor_name: name of the cursor which is already declared.

3. Fetch Cursor
After declaring and opening the cursor, the next step is to fetch the cursor. It is used to fetch the row
or the column.
Syntax
FETCH [NEXT [FROM]] cursor_name INTO variable_list;

https://www.javatpoint.com/mysql-tutorial
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2020/07/9-Comments-output.png

Parameter:
cursor_name: name of the cursor
variable_list: variables, comma separated, etc. is stored in a cursor for the result set

4. Close Cursor
The final step is to close the cursor.
Syntax
Close cursor_name;
Parameter:
Cursor_name: name of the cursor
Example for the cursor:
Step 1: Open the database and table.

Step 2: Now create the cursor.
Query:

Step 3: Now call the cursor.
Query:
SET @name_list ="";
CALL list_name(@name_list);
SELECT @name_list;

MySQL Trigger
The following naming convention should be used to name the trigger in MySQL:
(BEFOR | AFTER) table_name (INSERT | UPDATE | DELETE)
Thus,
Trigger Activation Time: BEFORE | AFTER
Trigger Event: INSERT | UPDATE | DELETE
How to create triggers in MySQL?
We can use the CREATE TRIGGER statement for creating a new trigger in MySQL. Below is the
syntax of creating a trigger in MySQL:
CREATE TRIGGER trigger_name
 (AFTER | BEFORE) (INSERT | UPDATE | DELETE)
 ON table_name FOR EACH ROW

https://www.javatpoint.com/mysql-tutorial

 BEGIN
 --variable declarations
 --trigger code
 END;

MySQL Create Trigger
In this article, we are going to learn how to create the first trigger in MySQL. We can create a new
trigger in MySQL by using the CREATE TRIGGER statement. It is to ensure that we have trigger
privileges while using the CREATE TRIGGER command. The following is the basic syntax to create a
trigger:
CREATE TRIGGER trigger_name trigger_time trigger_event
ON table_name FOR EACH ROW
BEGIN
 --variable declarations
 --trigger code
END;
Parameter Explanation
The create trigger syntax contains the following parameters:
trigger_name: It is the name of the trigger that we want to create. It must be written after the
CREATE TRIGGER statement. It is to make sure that the trigger name should be unique within the
schema.
trigger_time: It is the trigger action time, which should be either BEFORE or AFTER. It is the required
parameter while defining a trigger. It indicates that the trigger will be invoked before or after each
row modification occurs on the table.
trigger_event: It is the type of operation name that activates the trigger. It can be
either INSERT, UPDATE, or DELETE operation. The trigger can invoke only one event at one
time. If we want to define a trigger which is invoked by multiple events, it is required to define
multiple triggers, and one for each event.
table_name: It is the name of the table to which the trigger is associated. It must be written after
the ON keyword. If we did not specify the table name, a trigger would not exist.
BEGIN END Block: Finally, we will specify the statement for execution when the trigger is
activated. If we want to execute multiple statements, we will use the BEGIN END block that contains
a set of queries to define the logic for the trigger.
The trigger body can access the column's values, which are affected by the DML statement.
The NEW and OLD modifiers are used to distinguish the column values BEFORE and AFTER the
execution of the DML statement. We can use the column name with NEW and OLD modifiers
as OLD.col_name and NEW.col_name. The OLD.column_name indicates the column of an existing
row before the updation or deletion occurs. NEW.col_name indicates the column of a new row that
will be inserted or an existing row after it is updated.
For example, suppose we want to update the column name message_info using the trigger. In the
trigger body, we can access the column value before the update as OLD.message_info and the new
value NEW.message_info.
We can understand the availability of OLD and NEW modifiers with the below table:

Trigger Event OLD NEW

INSERT No Yes

https://www.javatpoint.com/mysql-trigger
https://www.javatpoint.com/mysql-insert
https://www.javatpoint.com/mysql-update
https://www.javatpoint.com/mysql-delete

UPDATE Yes Yes

ELETE Yes No

MySQL Trigger Example
Let us start creating a trigger in MySQL that makes modifications in the employee table. First, we
will create a new table named employee by executing the below statement:
CREATE TABLE employee(
 name varchar(45) NOT NULL,
 occupation varchar(35) NOT NULL,
 working_date date,
 working_hours varchar(10)
);
Next, execute the below statement to fill the records into the employee table:
INSERT INTO employee VALUES
('Robin', 'Scientist', '2020-10-04', 12),
('Warner', 'Engineer', '2020-10-04', 10),
('Peter', 'Actor', '2020-10-04', 13),
('Marco', 'Doctor', '2020-10-04', 14),
('Brayden', 'Teacher', '2020-10-04', 12),
('Antonio', 'Business', '2020-10-04', 11);
Next, execute the SELECT statement to verify the inserted record:

Next, we will create a BEFORE INSERT trigger. This trigger is invoked automatically insert
the working_hours = 0 if someone tries to insert working_hours < 0.
mysql> DELIMITER //
mysql> Create Trigger before_insert_empworkinghours
BEFORE INSERT ON employee FOR EACH ROW
BEGIN
IF NEW.working_hours < 0 THEN SET NEW.working_hours = 0;
END IF;
END //
If the trigger is created successfully, we will get the output as follows:

https://www.javatpoint.com/mysql-tutorial
https://www.javatpoint.com/mysql-select
https://www.javatpoint.com/mysql-before-insert-trigger

Now, we can use the following statements to invoke this trigger:
mysql> INSERT INTO employee VALUES
('Markus', 'Former', '2020-10-08', 14);

mysql> INSERT INTO employee VALUES
('Alexander', 'Actor', '2020-10-012', -13);
After execution of the above statement, we will get the output as follows:

In this output, we can see that on inserting the negative values into the working_hours column of
the table will automatically fill the zero value by a trigger.

