 JAVA QUESTION BANK

What is the difference between an Interface and an Abstract class?

An Abstract class declares have at least one instance method that is declared abstract which will be implemented by the subclasses. An abstract class can have instance methods that implement a default behavior. An Interface can only declare constants and instance methods, but cannot implement default behavior.

What is the purpose of garbage collection in Java, and when is it used?

The purpose of garbage collection is to identify and discard objects that are no longer needed by a program so that their resources can be reclaimed and reused. A Java object is subject to garbage collection when it becomes unreachable to the program in which it is used.

Describe synchronization in respect to multithreading.?

With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchonization, it is possible for one thread to modify a shared variable while another thread is in the process of using or updating same shared variable. This usually leads to significant errors.

Explain different way of using thread?

The thread could be implemented by using runnable interface or by inheriting from the Thread class. The former is more advantageous, 'cause when you are going for multiple inheritance..the only interface can help.

Difference between Swing and AWT?

AWT are heavy-weight componenets. Swings are light-weight components. Hence swing works faster than AWT.

What is the difference between a constructor and a method?

A constructor is a member function of a class that is used to create objects of that class. It has the same name as the class itself, has no return type, and is invoked using the new operator. A method is an ordinary member function of a class. It has its own name, a return type (which may be void), and is invoked using the dot operator.

State the significance of public, private, protected, default modifiers both singly and in combination and state the effect of package relationships on declared items qualified by these modifiers.?

public : Public class is visible in other packages, field is visible everywhere (class must be public too) private : Private variables or methods may be used only by an instance of the same class that declares the variable or method, A private feature may only be accessed by the class that owns the feature. protected : Is available to all classes in the same package and also available to all subclasses of the class that owns the protected feature.This access is provided even to subclasses that reside in a different package from the class that owns the protected feature. default :What you get by default ie, without any access modifier (ie, public private or protected).It means that it is visible to all within a particular package.

What is an abstract class?

Abstract class must be extended/subclassed (to be useful). It serves as a template. A class that is abstract may not be instantiated (ie, you may not call its constructor), abstract class may contain static data. Any class with an abstract method is automatically abstract itself, and must be declared as such. A class may be declared abstract even if it has no abstract methods. This prevents it from being instantiated.

What is static in java?

Static means one per class, not one for each object no matter how many instance of a class might exist. This means that you can use them without creating an instance of a class.Static methods are implicitly final, because overriding is done based on the type of the object, and static methods are attached to a class, not an object. A static method in a superclass can be shadowed by another static method in a subclass, as long as the original method was not declared final. However, you can't override a static method with a nonstatic method. In other words, you can't change a static method into an instance method in a subclass.

What is final?

A final class can't be extended ie., final class may not be subclassed. A final method can't be overridden when its class is inherited. You can't change value of a final variable (is a constant).

Are the imports checked for validity at compile time? e.g. will the code containing an import such as java.lang.ABCD compile?

Yes the imports are checked for the semantic validity at compile time. The code containing above line of import will not compile. It will throw an error saying,can not resolve symbol symbol : class ABCD location: package io import java.io.ABCD;

Does importing a package imports the subpackages as well?

e.g. Does importing com.MyTest.* also import com.MyTest.UnitTests.*?
No you will have to import the subpackages explicitly. Importing com.MyTest.* will import classes in the package MyTest only. It will not import any class in any of it's subpackage.

What is the difference between declaring a variable and defining a variable?

In declaration we just mention the type of the variable and it's name. We do not initialize it. But defining means declaration + initialization. e.g String s; is just a declaration while String s = new String ("abcd"); Or String s = "abcd"; are both definitions.

What is the default value of an object reference declared as an instance variable?

NULL unless we define it explicitly.

Can a class be private or protected?

No. A class cannot be private or protected. It can have either "public" or no modifier. If it does not have a modifier it is supposed to have a default access. If a level class is declared as private the compiler will complain that the "modifier private is not allowed here". This means that a level class can not be private. Same is the case with protected.

What type of parameter passing does Java support?

In Java the arguments are always passed by value.

Primitive data types are passed by reference or pass by value?

Primitive data types are passed by value.

Objects are passed by value or by reference?

Java only supports pass by value. With objects, the object reference itself is passed by value and so both the original reference and parameter copy both refer to the same object .

What is serialization?

Serialization is a mechanism by which you can save the state of an object by converting it to a byte stream.

How do I serialize an object to a file?

The class whose instances are to be serialized should implement an interface Serializable. Then you pass the instance to the ObjectOutputStream which is connected to a fileoutputstream. This will save the object to a file.

Which methods of Serializable interface should I implement?

The serializable interface is an empty interface, it does not contain any methods. So we do not implement any methods.

How can I customize the Seralization process?

i.e. how can one have a control over the serialization process?
Yes it is possible to have control over serialization process. The class should implement Externalizable interface. This interface contains two methods namely readExternal and writeExternal. You should implement these methods and write the logic for customizing the serialization process.

What is an abstract class?

Abstract class must be extended/subclassed (to be useful). It serves as a template. A class that is abstract may not be instantiated (ie, you may not call its constructor), abstract class may contain static data. Any class with an abstract method is automatically abstract itself, and must be declared as such. A class may be declared abstract even if it has no abstract methods. This prevents it from being instantiated.

What is the common usage of serialization?

Whenever an object is to be sent over the network, objects need to be serialized. Moreover if the state of an object is to be saved, objects need to be serilazed.

What is Externalizable interface?

Externalizable is an interface which contains two methods readExternal and writeExternal. These methods give you a control over the serialization mechanism. Thus if your class implements this interface, you can customize the serialization process by implementing these methods.

What happens to the object references included in the object?

The serialization mechanism generates an object graph for serialization. Thus it determines whether the included object references are serializable or not. This is a recursive process. Thus when an object is serialized, all the included objects are also serialized alongwith the original obect.

What one should take care of while serializing the object?

One should make sure that all the included objects are also serializable. If any of the objects is not serializable then it throws a NotSerializableException.

What if the main method is declared as private?

The program compiles properly but at runtime it will give "Main method not public." message.

What if the static modifier is removed from the signature of the main method?

Program compiles. But at runtime throws an error "NoSuchMethodError".

What if I write static public void instead of public static void?

Program compiles and runs properly.

What if I do not provide the String array as the argument to the method?

Program compiles but throws a runtime error "NoSuchMethodError".

What is the first argument of the String array in main method?

The String array is empty. It does not have any element. This is unlike C/C++ where the first element by default is the program name.

If I do not provide any arguments on the command line, then the String array of Main method will be empty of null?

It is empty. But not null.

How can one prove that the array is not null but empty?

Print args.length. It will print 0. That means it is empty. But if it would have been null then it would have thrown a NullPointerException on attempting to print args.length.

What environment variables do I need to set on my machine in order to be able to run Java programs?

CLASSPATH and PATH are the two variables.

Can an application have multiple classes having main method?

Yes it is possible. While starting the application we mention the class name to be run. The JVM will look for the Main method only in the class whose name you have mentioned. Hence there is not conflict amongst the multiple classes having main method.

Can I have multiple main methods in the same class?

No the program fails to compile. The compiler says that the main method is already defined in the class.

Do I need to import java.lang package any time? Why ?

No. It is by default loaded internally by the JVM.

Will the JVM load the package twice at runtime?
One can import the same package or same class multiple times. Neither compiler nor JVM complains abt it. And the JVM will internally load the class only once no matter how many times you import the same class.

What are Checked and UnChecked Exception?

A checked exception is some subclass of Exception (or Exception itself), excluding class RuntimeException and its subclasses. Making an exception checked forces client programmers to deal with the possibility that the exception will be thrown. eg, IOException thrown by java.io.FileInputStream's read() method

checked exceptions are RuntimeException and any of its subclasses. Class Error and its subclasses also are unchecked. With an unchecked exception, however, the compiler doesn't force client programmers either to catch the exception or declare it in a throws clause. In fact, client programmers may not even know that the exception could be thrown. eg, StringIndexOutOfBoundsException thrown by String's charAt() method Checked exceptions must be caught at compile time. Runtime exceptions do not need to be. Errors often cannot be.

What is Overriding?

When a class defines a method using the same name, return type, and arguments as a method in its superclass, the method in the class overrides the method in the superclass. When the method is invoked for an object of the class, it is the new definition of the method that is called, and not the method definition from superclass. Methods may be overridden to be more public, not more private.

What are different types of inner classes?

They are Nested -level classes, Member classes, Local classes, Anonymous classes

Nested -level classes- If you declare a class within a class and specify the static modifier, the compiler treats the class just like any other -level class. Any class outside the declaring class accesses the nested class with the declaring class name acting similarly to a package. eg, outer.inner. -level inner classes implicitly have access only to static variables.There can also be inner interfaces. All of these are of the nested -level variety.

Member classes - Member inner classes are just like other member methods and member variables and access to the member class is restricted, just like methods and variables. This means a public member class acts similarly to a nested -level class. The primary difference between member classes and nested -level classes is that member classes have access to the specific instance of the enclosing class.

Local classes - Local classes are like local variables, specific to a block of code. Their visibility is only within the block of their declaration. In order for the class to be useful beyond the declaration block, it would need to implement a more publicly available interface.Because local classes are not members, the modifiers public, protected, private, and static are not usable.

Anonymous classes - Anonymous inner classes extend local inner classes one level further. As anonymous classes have no name, you cannot provide a constructor.

What is EJB?

Enterprise JavaBeans technology is the industry-embraced server-side component architecture for the Java platform.

EJB brings components to the server and this means alot of things
Component reuse speeds up application development
Increased specialization becomes possible. Certain organizations specialize in making components, other assemble them into applications
Component programming makes good design, which means programs get more maintainable

For up to date information and news about EJB, visit the Javasoft Enterprise Java Beans site.

What is a J2EE Application?

The Java 2 Platform, Enterprise Edition specification introduces the concept of J2EE applications. A J2EE application contains J2EE modules, which could be web applications, EJBs, Connectors and application clients. It also contains meta-information about the application as well as shared libraries.

You can also say that a J2EE application is a set of J2EE modules with some added glue that binds them together into a complete integrated application. The shape of a J2EE application is a single Java Archive file with the .ear filename extension.

What is JSP?

JavaServer PagesTM (JSP) technology provides a simplified, fast way to create web pages that display dynamically-generated content. The JSP specification, developed through an industry-wide initiative led by Sun Microsystems, defines the interaction between the server and the JSP technology-based page, and describes the format and syntax of the page

What are some advantages and disadvantages of Java Sockets?

Some advantages of Java Sockets:

Sockets are flexible and sufficient. Efficient socket based programming can be easily implemented for general communications.

Sockets cause low network traffic. Unlike HTML forms and CGI scripts that generate and transfer whole web pages for each new request, Java applets can send only necessary updated information.

Some disadvantages of Java Sockets:

Security restrictions are sometimes overbearing because a Java applet running in a Web browser is only able to establish connections to the machine where it came from, and to nowhere else on the network

Despite all of the useful and helpful Java features, Socket based communications allows only to send packets of raw data between applications. Both the client-side and server-side have to provide mechanisms to make the data useful in any way.

Since the data formats and protocols remain application specific, the re-use of socket based implementations is limited.

SHORT QUESTIONS (ASKED AT THE TIME OF INTERVIEW/VIVA).
1.what is a transient variable?
A transient variable is a variable that may not be serialized.

2.which containers use a border Layout as their default layout?
The window, Frame and Dialog classes use a border layout as their default layout.

3.Why do threads block on I/O?
Threads block on i/o (that is enters the waiting state) so that other threads may execute while the i/o Operation is performed.

4. How are Observer and Observable used?
Objects that subclass the Observable class maintain a list of observers. When an Observable object is updated it invokes the update() method of each of its observers to notify the observers that it has changed state. The Observer interface is implemented by objects that observe Observable objects.

5. What is synchronization and why is it important?
With respect to multithreading, synchronization is the capability to control the access of multiple threads to shared resources. Without synchronization, it is possible for one thread to modify a shared object while another thread is in the process of using or updating that object's value. This often leads to significant errors.

6. Can a lock be acquired on a class?
Yes, a lock can be acquired on a class. This lock is acquired on the class's Class object..

7. What's new with the stop(), suspend() and resume() methods in JDK 1.2?
The stop(), suspend() and resume() methods have been deprecated in JDK 1.2.

8. Is null a keyword?
The null value is not a keyword.

9. What is the preferred size of a component?
The preferred size of a component is the minimum component size that will allow the component to display normally.

10. What method is used to specify a container's layout?
The setLayout() method is used to specify a container's layout.

11. Which containers use a FlowLayout as their default layout?
The Panel and Applet classes use the FlowLayout as their default layout.

12. What state does a thread enter when it terminates its processing?
When a thread terminates its processing, it enters the dead state.

13. What is the Collections API?
The Collections API is a set of classes and interfaces that support operations on collections of objects.

14. Which characters may be used as the second character of an identifier,
but not as the first character of an identifier?
The digits 0 through 9 may not be used as the first character of an identifier but they may be used after the first character of an identifier.

15. What is the List interface?
The List interface provides support for ordered collections of objects.

16. How does Java handle integer overflows and underflows?
It uses those low order bytes of the result that can fit into the size of the type allowed by the operation.

17. What is the Vector class?
The Vector class provides the capability to implement a growable array of objects

18. What modifiers may be used with an inner class that is a member of an outer class?
A (non-local) inner class may be declared as public, protected, private, static, final, or abstract.

19. What is an Iterator interface?
The Iterator interface is used to step through the elements of a Collection.

20. What is the difference between the >> and >>> operators?
The >> operator carries the sign bit when shifting right. The >>> zero-fills bits that have been shifted out.

21. Which method of the Component class is used to set the position and
size of a component?
setBounds()

22. How many bits are used to represent Unicode, ASCII, UTF-16, and UTF-8 characters?
Unicode requires 16 bits and ASCII require 7 bits. Although the ASCII character set uses only 7 bits, it is usually represented as 8 bits. UTF-8 represents characters using 8, 16, and 18 bit patterns. UTF-16 uses 16-bit and larger bit patterns.

23What is the difference between yielding and sleeping?
When a task invokes its yield() method, it returns to the ready state. When a task invokes its sleep() method, it returns to the waiting state.

24. Which java.util classes and interfaces support event handling?
The EventObject class and the EventListener interface support event processing.

25. Is sizeof a keyword?
The sizeof operator is not a keyword.

26. What are wrapped classes?
Wrapped classes are classes that allow primitive types to be accessed as objects.

27. Does garbage collection guarantee that a program will not run out of memory?
Garbage collection does not guarantee that a program will not run out of memory. It is possible for programs to use up memory resources faster than they are garbage collected. It is also possible for programs to create objects that are not subject to garbage collection

28. What restrictions are placed on the location of a package statement
within a source code file?
A package statement must appear as the first line in a source code file (excluding blank lines and comments).

29. Can an object's finalize() method be invoked while it is reachable?
An object's finalize() method cannot be invoked by the garbage collector while the object is still reachable. However, an object's finalize() method may be invoked by other objects.

30. What is the immediate superclass of the Applet class?
Panel

31. What is the difference between preemptive scheduling and time slicing?
Under preemptive scheduling, the highest priority task executes until it enters the waiting or dead states or a higher priority task comes into existence. Under time slicing, a task executes for a predefined slice of time and then reenters the pool of ready tasks. The scheduler then determines which task should execute next, based on priority and
other factors.

32. Name three Component subclasses that support painting.
The Canvas, Frame, Panel, and Applet classes support painting.

33. What value does readLine() return when it has reached the end of a file?
The readLine() method returns null when it has reached the end of a file.

34. What is the immediate superclass of the Dialog class?
Window

35. What is clipping?
Clipping is the process of confining paint operations to a limited area or shape.

36. What is a native method?
A native method is a method that is implemented in a language other than Java.

37. Can a for statement loop indefinitely?
Yes, a for statement can loop indefinitely. For example, consider the following:
for(;
51. What is the purpose of finalization?
The purpose of finalization is to give an unreachable object the opportunity to perform any cleanup processing before the object is garbage collected.

52. Which class is the immediate superclass of the MenuComponent class.
Object

53. What invokes a thread's run() method?
After a thread is started, via its start() method or that of the Thread class, the JVM invokes the thread's run() method when the thread is initially executed.

54. What is the difference between the Boolean & operator and the && operator?
If an expression involving the Boolean & operator is evaluated, both operands are evaluated. Then the & operator is applied to the operand. When an expression involving the && operator is evaluated, the first operand is evaluated. If the first operand returns a value of true then the second operand is evaluated. The && operator is then applied to the first and second operands. If the first operand evaluates to false, the evaluation of the second operand is skipped.

55. Name three subclasses of the Component class.
Box.Filler, Button, Canvas, Checkbox, Choice, Container, Label, List, Scrollbar, or TextComponent

56. What is the GregorianCalendar class?
The GregorianCalendar provides support for traditional Western calendars.

57. Which Container method is used to cause a container to be laid out and redisplayed?
validate()

58. What is the purpose of the Runtime class?
The purpose of the Runtime class is to provide access to the Java runtime system.

59. How many times may an object's finalize() method be invoked by the
garbage collector?
An object's finalize() method may only be invoked once by the garbage collector.

60. What is the purpose of the finally clause of a try-catch-finally statement?
The finally clause is used to provide the capability to execute code no matter whether or not an exception is thrown or caught.

61. What is the argument type of a program's main() method?
A program's main() method takes an argument of the String[] type.

62. Which Java operator is right associative?
The = operator is right associative.

63. What is the Locale class?
The Locale class is used to tailor program output to the conventions of a particular geographic, political, or cultural region.

64. Can a double value be cast to a byte?
Yes, a double value can be cast to a byte.

65. What is the difference between a break statement and a continue statement?
A break statement results in the termination of the statement to which it applies (switch, for, do, or while). A continue statement is used to end the current loop iteration and return control to the loop statement.

66. What must a class do to implement an interface?
It must provide all of the methods in the interface and identify the interface in its implements clause.

67. What method is invoked to cause an object to begin executing as a separate thread?
The start() method of the Thread class is invoked to cause an object to begin executing as a separate thread.

68. Name two subclasses of the TextComponent class.
TextField and TextArea

69. What is the advantage of the event-delegation model over the earlier event-inheritance model?
The event-delegation model has two advantages over the event-inheritance model. First, it enables event handling to be handled by objects other than the ones that generate the events (or their containers). This allows a clean separation between a component's design and its use. The other advantage of the event-delegation model is that it performs much better in applications where many events are generated. This performance improvement is due to the fact that the event-delegation model does not have to repeatedly process unhandled events, as is the case of the event-inheritance model.

70. Which containers may have a MenuBar?
Frame

71. How are commas used in the intialization and iteration parts of a for statement?
Commas are used to separate multiple statements within the initialization and iteration parts of a for statement.

72. What is the purpose of the wait(), notify(), and notifyAll() methods?
The wait(),notify(), and notifyAll() methods are used to provide an efficient way for threads to wait for a shared resource. When a thread executes an object's wait() method, it enters the waiting state. It only enters the ready state after another thread invokes the object's notify() or notifyAll() methods..

73. What is an abstract method?
An abstract method is a method whose implementation is deferred to a subclass.

74. How are Java source code files named?
A Java source code file takes the name of a public class or interface that is defined within the file. A source code file may contain at most one public class or interface. If a public class or interface is defined within a source code file, then the source code file must take the name of the public class or interface. If no public class or interface is defined within a source code file, then the file must take on a name that is different than its classes and interfaces. Source code files use the .java extension.

75. What is the relationship between the Canvas class and the Graphics class?
A Canvas object provides access to a Graphics object via its paint() method.

76. What are the high-level thread states?
The high-level thread states are ready, running, waiting, and dead.

77. What value does read() return when it has reached the end of a file?
The read() method returns -1 when it has reached the end of a file.

78. Can a Byte object be cast to a double value?
No, an object cannot be cast to a primitive value.

79. What is the difference between a static and a non-static inner class?
A non-static inner class may have object instances that are associated with instances of the class's outer class. A static inner class does not have any object instances

80. What is the difference between the String and StringBuffer classes?
String objects are constants. StringBuffer objects are not.

81. If a variable is declared as private, where may the variable be accessed?
A private variable may only be accessed within the class in which it is declared.

82. What is an object's lock and which object's have locks?
An object's lock is a mechanism that is used by multiple threads to obtain synchronized access to the object. A thread may execute a synchronized method of an object only after it has acquired the object's lock. All objects and classes have locks. A class's lock is acquired on the class's Class object.

83. What is the Dictionary class?
The Dictionary class provides the capability to store key-value pairs.

84. How are the elements of a BorderLayout organized?
The elements of a BorderLayout are organized at the borders (North, South, East, and West) and the center of a container.

85. What is the % operator?
It is referred to as the modulo or remainder operator. It returns the remainder of dividing the first operand by the second operand.

86. When can an object reference be cast to an interface reference?
An object reference be cast to an interface reference when the object implements the referenced interface.

87. What is the difference between a Window and a Frame?
The Frame class extends Window to define a main application window that can have a menu bar.

88. Which class is extended by all other classes?
The Object class is extended by all other classes.

89. Can an object be garbage collected while it is still reachable?
A reachable object cannot be garbage collected. Only unreachable objects may be garbage collected..

90. Is the ternary operator written x : y ? z or x ? y : z ?
It is written x ? y : z.

91. What is the difference between the Font and FontMetrics classes?
The FontMetrics class is used to define implementation-specific properties, such as ascent and descent, of a Font object.

92. How is rounding performed under integer division?
The fractional part of the result is truncated. This is known as rounding toward zero.

93. What happens when a thread cannot acquire a lock on an object?
If a thread attempts to execute a synchronized method or synchronized statement and is unable to acquire an object's lock, it enters the waiting state until the lock becomes available.

94. What is the difference between the Reader/Writer class hierarchy and the
InputStream/OutputStream class hierarchy?
The Reader/Writer class hierarchy is character-oriented, and the InputStream/OutputStream class hierarchy is byte-oriented.

95. What classes of exceptions may be caught by a catch clause?
A catch clause can catch any exception that may be assigned to the Throwable type. This includes the Error and Exception types.

96. If a class is declared without any access modifiers, where may the class be accessed?
A class that is declared without any access modifiers is said to have package access. This means that the class can only be accessed by other classes and interfaces that are defined within the same package.

97. What is the SimpleTimeZone class?
The SimpleTimeZone class provides support for a Gregorian calendar.

98. What is the Map interface?
The Map interface replaces the JDK 1.1 Dictionary class and is used associate keys with values.

99. Does a class inherit the constructors of its superclass?
A class does not inherit constructors from any of its superclasses.

100. For which statements does it make sense to use a label?
The only statements for which it makes sense to use a label are those statements that can enclose a break or continue statement.

101. What is the purpose of the System class?
The purpose of the System class is to provide access to system resources.

102. Which TextComponent method is used to set a TextComponent to the read-only state?
setEditable()

103. How are the elements of a CardLayout organized?
The elements of a CardLayout are stacked, one on top of the other, like a deck of cards.

104. Is &&= a valid Java operator?
No, it is not.

105. Name the eight primitive Java types.
The eight primitive types are byte, char, short, int, long, float, double, and boolean.

106. Which class should you use to obtain design information about an object?
The Class class is used to obtain information about an object's design.

107. What is the relationship between clipping and repainting?
When a window is repainted by the AWT painting thread, it sets the clipping regions to the area of the window that requires repainting.

108. Is "abc" a primitive value?
The String literal "abc" is not a primitive value. It is a String object.

109. What is the relationship between an event-listener interface and an
event-adapter class?
An event-listener interface defines the methods that must be implemented by an event handler for a particular kind of event. An event adapter provides a default implementation of an event-listener interface.

110. What restrictions are placed on the values of each case of a switch statement?
During compilation, the values of each case of a switch statement must evaluate to a value that can be promoted to an int value.

111. What modifiers may be used with an interface declaration?
An interface may be declared as public or abstract.

112. Is a class a subclass of itself?
A class is a subclass of itself.

113. What is the highest-level event class of the event-delegation model?
The java.util.EventObject class is the highest-level class in the event-delegation class hierarchy.

114. What event results from the clicking of a button?
The ActionEvent event is generated as the result of the clicking of a button.

115. How can a GUI component handle its own events?
A component can handle its own events by implementing the required event-listener interface and adding itself as its own event listener.

116. What is the difference between a while statement and a do statement?
A while statement checks at the beginning of a loop to see whether the next loop iteration should occur. A do statement checks at the end of a loop to see whether the next iteration of a loop should occur. The do statement will always execute the body of a loop at least once.

117. How are the elements of a GridBagLayout organized?
The elements of a GridBagLayout are organized according to a grid. However, the elements are of different sizes and may occupy more than one row or column of the grid. In addition, the rows and columns may have different sizes.

118. What advantage do Java's layout managers provide over traditional windowing systems?
Java uses layout managers to lay out components in a consistent manner across all windowing platforms. Since Java's layout managers aren't tied to absolute sizing and positioning, they are able to accomodate platform-specific differences among windowing systems.

119. What is the Collection interface?
The Collection interface provides support for the implementation of a mathematical bag - an unordered collection of objects that may contain duplicates.

120. What modifiers can be used with a local inner class?
A local inner class may be final or abstract.

121. What is the difference between static and non-static variables?
A static variable is associated with the class as a whole rather than with specific instances of a class. Non-static variables take on unique values with each object instance.

122. What is the difference between the paint() and repaint() methods?
The paint() method supports painting via a Graphics object. The repaint() method is used to cause paint() to be invoked by the AWT painting thread.

123. What is the purpose of the File class?
The File class is used to create objects that provide access to the files and directories of a local file system.

124. Can an exception be rethrown?
Yes, an exception can be rethrown.

125. Which Math method is used to calculate the absolute value of a number?
The abs() method is used to calculate absolute values.

126. How does multithreading take place on a computer with a single CPU?
The operating system's task scheduler allocates execution time to multiple tasks. By quickly switching between executing tasks, it creates the impression that tasks execute sequentially.

127. When does the compiler supply a default constructor for a class?
The compiler supplies a default constructor for a class if no other constructors are provided.

128. When is the finally clause of a try-catch-finally statement executed?
The finally clause of the try-catch-finally statement is always executed unless the thread of execution terminates or an exception occurs within the execution of the finally clause.

129. Which class is the immediate superclass of the Container class?
Component

130. If a method is declared as protected, where may the method be accessed?
A protected method may only be accessed by classes or interfaces of the same package or by subclasses of the class in which it is declared.

131. How can the Checkbox class be used to create a radio button?
By associating Checkbox objects with a CheckboxGroup.

132. Which non-Unicode letter characters may be used as the first character
of an identifier?
The non-Unicode letter characters $ and _ may appear as the first character of an identifier

133. What restrictions are placed on method overloading?
Two methods may not have the same name and argument list but different return types.

134. What happens when you invoke a thread's interrupt method while it is
sleeping or waiting?
When a task's interrupt() method is executed, the task enters the ready state. The next time the task enters the running state, an InterruptedException is thrown.

135. What is casting?
There are two types of casting, casting between primitive numeric types and casting between object references. Casting between numeric types is used to convert larger values, such as double values, to smaller values, such as byte values. Casting between object references is used to refer to an object by a compatible class, interface, or array type reference.

136. What is the return type of a program's main() method?
A program's main() method has a void return type.

137. Name four Container classes.
Window, Frame, Dialog, FileDialog, Panel, Applet, or ScrollPane

138. What is the difference between a Choice and a List?
A Choice is displayed in a compact form that requires you to pull it down to see the list of available choices. Only one item may be selected from a Choice. A List may be displayed in such a way that several List items are visible. A List supports the selection of one or more List items.

139. What class of exceptions are generated by the Java run-time system?
The Java runtime system generates RuntimeException and Error exceptions.

140. What class allows you to read objects directly from a stream?
The ObjectInputStream class supports the reading of objects from input streams.

141. What is the difference between a field variable and a local variable?
A field variable is a variable that is declared as a member of a class. A local variable is a variable that is declared local to a method.

142. Under what conditions is an object's finalize() method invoked by the garbage collector?
The garbage collector invokes an object's finalize() method when it detects that the object has become unreachable.

143. How are this() and super() used with constructors?
this() is used to invoke a constructor of the same class. super() is used to invoke a superclass constructor.

144. What is the relationship between a method's throws clause and the exceptions
that can be thrown during the method's execution?
A method's throws clause must declare any checked exceptions that are not caught within the body of the method.

145. What is the difference between the JDK 1.02 event model and the event-delegation
model introduced with JDK 1.1?
The JDK 1.02 event model uses an event inheritance or bubbling approach. In this model, components are required to handle their own events. If they do not handle a particular event, the event is inherited by (or bubbled up to) the component's container. The container then either handles the event or it is bubbled up to its container and so on, until the highest-level container has been tried..
In the event-delegation model, specific objects are designated as event handlers for GUI components. These objects implement event-listener interfaces. The event-delegation model is more efficient than the event-inheritance model because it eliminates the processing required to support the bubbling of unhandled events.

146. How is it possible for two String objects with identical values not to be equal
under the == operator?
The == operator compares two objects to determine if they are the same object in memory. It is possible for two String objects to have the same value, but located indifferent areas of memory.

147. Why are the methods of the Math class static?
So they can be invoked as if they are a mathematical code library.

148. What Checkbox method allows you to tell if a Checkbox is checked?
getState()

149. What state is a thread in when it is executing?
An executing thread is in the running state.

150. What are the legal operands of the instanceof operator?
The left operand is an object reference or null value and the right operand is a class, interface, or array type.

151. How are the elements of a GridLayout organized?
The elements of a GridBad layout are of equal size and are laid out using the squares of a grid.

152. What an I/O filter?
An I/O filter is an object that reads from one stream and writes to another, usually altering the data in some way as it is passed from one stream to another.

153. If an object is garbage collected, can it become reachable again?
Once an object is garbage collected, it ceases to exist. It can no longer become reachable again.

154. What is the Set interface?
The Set interface provides methods for accessing the elements of a finite mathematical set. Sets do not allow duplicate elements.

155. What classes of exceptions may be thrown by a throw statement?
A throw statement may throw any expression that may be assigned to the Throwable type.

156. What are E and PI?
E is the base of the natural logarithm and PI is mathematical value pi.

157. Are true and false keywords?
The values true and false are not keywords.

158. What is a void return type?
A void return type indicates that a method does not return a value.

159. What is the purpose of the enableEvents() method?
The enableEvents() method is used to enable an event for a particular object. Normally, an event is enabled when a listener is added to an object for a particular event. The enableEvents() method is used by objects that handle events by overriding their event-dispatch methods.

160. What is the difference between the File and RandomAccessFile classes?
The File class encapsulates the files and directories of the local file system. The RandomAccessFile class provides the methods needed to directly access data contained in any part of a file.

161. What happens when you add a double value to a String?
The result is a String object.

162. What is your platform's default character encoding?
If you are running Java on English Windows platforms, it is probably Cp1252. If you are running Java on English Solaris platforms, it is most likely 8859_1..

163. Which package is always imported by default?
The java.lang package is always imported by default.

164. What interface must an object implement before it can be written to a
stream as an object?
An object must implement the Serializable or Externalizable interface before it can be written to a stream as an object.

165. How are this and super used?
this is used to refer to the current object instance. super is used to refer to the variables and methods of the superclass of the current object instance.

166. What is the purpose of garbage collection?
The purpose of garbage collection is to identify and discard objects that are no longer needed by a program so that their resources may be reclaimed and reused.

167. What is a compilation unit?
A compilation unit is a Java source code file.

168. What interface is extended by AWT event listeners?
All AWT event listeners extend the java.util.EventListener interface.

169. What restrictions are placed on method overriding?
Overridden methods must have the same name, argument list, and return type.
The overriding method may not limit the access of the method it overrides.
The overriding method may not throw any exceptions that may not be thrown
by the overridden method.

170. How can a dead thread be restarted?
A dead thread cannot be restarted.

171. What happens if an exception is not caught?
An uncaught exception results in the uncaughtException() method of the thread's ThreadGroup being invoked, which eventually results in the termination of the program in which it is thrown.

172. What is a layout manager?
A layout manager is an object that is used to organize components in a container.

173. Which arithmetic operations can result in the throwing of an ArithmeticException?
Integer / and % can result in the throwing of an ArithmeticException.

174. What are three ways in which a thread can enter the waiting state?
A thread can enter the waiting state by invoking its sleep() method, by blocking on I/O, by unsuccessfully attempting to acquire an object's lock, or by invoking an object's wait() method. It can also enter the waiting state by invoking its (deprecated) suspend() method.

175. Can an abstract class be final?
An abstract class may not be declared as final.

176. What is the ResourceBundle class?
The ResourceBundle class is used to store locale-specific resources that can be loaded by a program to tailor the program's appearance to the particular locale in which it is being run.

177. What happens if a try-catch-finally statement does not have a catch clause to handle an exception that is thrown within the body of the try statement?
The exception propagates up to the next higher level try-catch statement (if any) or results in the program's termination.

178. What is numeric promotion?
Numeric promotion is the conversion of a smaller numeric type to a larger numeric type, so that integer and floating-point operations may take place. In numerical promotion, byte, char, and short values are converted to int values. The int values are also converted to long values, if necessary. The long and float values are converted to double values, as required.

179. What is the difference between a Scrollbar and a ScrollPane?
A Scrollbar is a Component, but not a Container. A ScrollPane is a Container. A ScrollPane handles its own events and performs its own scrolling.

180. What is the difference between a public and a non-public class?
A public class may be accessed outside of its package. A non-public class may not be accessed outside of its package.

181. To what value is a variable of the boolean type automatically initialized?
The default value of the boolean type is false.

182. Can try statements be nested?
Try statements may be tested.

183. What is the difference between the prefix and postfix forms of the ++ operator?
The prefix form performs the increment operation and returns the value of the increment operation. The postfix form returns the current value all of the expression and then performs the increment operation on that value.

184. What is the purpose of a statement block?
A statement block is used to organize a sequence of statements as a single statement group.

185. What is a Java package and how is it used?
A Java package is a naming context for classes and interfaces. A package is used to create a separate name space for groups of classes and interfaces. Packages are also used to organize related classes and interfaces into a single API unit and to control accessibility to these classes and interfaces.

186. What modifiers may be used with a top-level class?
A top-level class may be public, abstract, or final.

187. What are the Object and Class classes used for?
The Object class is the highest-level class in the Java class hierarchy. The Class class is used to represent the classes and interfaces that are loaded by a Java program..

188. How does a try statement determine which catch clause should be used to handle an exception?
When an exception is thrown within the body of a try statement, the catch clauses of the try statement are examined in the order in which they appear. The first catch clause that is capable of handling the exception is executed. The remaining catch clauses are ignored.

189. Can an unreachable object become reachable again?
An unreachable object may become reachable again. This can happen when the object's finalize() method is invoked and the object performs an operation which causes it to become accessible to reachable objects.

190. When is an object subject to garbage collection?
An object is subject to garbage collection when it becomes unreachable to the program in which it is used.

191. What method must be implemented by all threads?
All tasks must implement the run() method, whether they are a subclass of Thread or implement the Runnable interface.

192. What methods are used to get and set the text label displayed by a Button object?
getLabel() and setLabel()

193. Which Component subclass is used for drawing and painting?
Canvas

194. What are synchronized methods and synchronized statements?
Synchronized methods are methods that are used to control access to an object. A thread only executes a synchronized method after it has acquired the lock for the method's object or class. Synchronized statements are similar to synchronized methods. A synchronized statement can only be executed after a thread has acquired the lock for the object or class referenced in the synchronized statement.

195. What are the two basic ways in which classes that can be run as threads may be defined?
A thread class may be declared as a subclass of Thread, or it may implement the Runnable interface.

196. What are the problems faced by Java programmers who don't use layout managers?
Without layout managers, Java programmers are faced with determining how their GUI will be displayed across multiple windowing systems and finding a common sizing and positioning that will work within the constraints imposed by each windowing system.

197. What is the difference between an if statement and a switch statement?
The if statement is used to select among two alternatives. It uses a boolean expression to decide which alternative should be executed. The switch statement is used to select among multiple alternatives. It uses an int expression to determine which alternative should be executed.

198. What happens when you add a double value to a String?
The result is a String object.

199. What is the List interface?
The List interface provides support for ordered collections of objects.

Subjective Question Answers In Java Programming
Q.01: What is the difference between C++ and Java?
Ans: Both C++ and Java use similar syntax and are Object Oriented, but:
1. Java does not support pointers. Pointers are inherently tricky to use and troublesome.

2. Java does not support multiple inheritances because it causes more problems than it solves. Instead Java supports multiple interface inheritance, which allows an object to inherit many method signatures from different interfaces with the condition that the inheriting object must implement those inherited methods. The multiple interface inheritance also allows an object to behave polymorphically on those methods.
3. Java does not support destructors but rather adds a finalize() method. Finalize methods are invoked by the garbage collector prior to reclaiming the memory occupied by the object, which has the finalize() method. This means you do not know when the objects are going to be finalized. Avoid using finalize() method to release non-memory resources like file handles, sockets, database connections etc because Java has only a finite number of these resources and you do not know when the garbage collection is going to kick in to

release these resources through the finalize() method.

4. Java does not include structures or unions because the traditional data structures are implemented as an object oriented framework.
5. All the code in Java program is encapsulated within classes therefore Java does not have global variables or functions.
6. C++ requires explicit memory management, while Java includes automatic garbage collection.
Q.02: What is the Java Virtual Machine?

Ans: The JVM is the software that executes Java byte code. A Java program, written in a file with a .java extension, is compiled into class files that have a .class extension. The class files are written in byte code. To execute these files, the computer uses the JVM to interpret the byte code.

A browser that is capable of executing Java applets has the JVM built into it. To run a Java application, the Java Runtime Environment (JRE) must be installed. The JRE contains the files in the Java Development Kit minus the development tools, only the files necessary to run a Java application are present.

The byte code is the same for all platforms, but the JVM will be different on different platforms because it needs to execute programs using the native code of the machine it is running on.

Q.03: When is a method said to be overloaded and when is a method said to be overridden?
Ans: Method Overloading: Overloading deals with multiple methods in the same class with the same name but different method signatures. e.g
class MyClass {

public void getInvestAmount(int rate) {…}
public void getInvestAmount(int rate, long principal)

{ … }

}
Both the above methods have the same method names but different method signatures, which mean the methods are overloaded.
Method Overriding: Overriding deals with two methods; one in the parent class and the other one in the child class and have the same name and signatures.
class BaseClass{

public void getInvestAmount(int rate) {…}

}

class MyClass extends BaseClass {

public void getInvestAmount(int rate) { …}

}
Both the above methods have the same method names and the signatures but the method in the subclass MyClass overrides the method in the superclass BaseClass.

Thus we can conclude that Overloading lets us define the same operation in different ways for different data & Overriding lets us define the same operation in different ways for different object types.
Q.04: What is the main difference between a String and a StringBuffer class?
Ans: String: String is immutable: We can’t modify a string object but can replace it by creating a new instance. Creating a new instance is rather expensive.

//Inefficient version using immutable String

String output = “Some text”

int count = 100;

for(int i =0; i<count; i++) {

output += i;

}

return output;
The above code would build 99 new String objects, of which 98 would be thrown away

immediately. Creating new objects is not efficient.
StringBuffer: StringBuffer is mutable: We should use StringBuffer when we want to

modify the contents.
//More efficient version using mutable StringBuffer

StringBuffer output = new StringBuffer(110);

Output.append(“Some text”);

for(int I =0; i<count; i++) {

output.append(i);

}

return output.toString();
The above code creates only two new objects, the StringBuffer and the final String that is returned. StringBuffer expands as needed, which is costly however, so it would be better to initilise the StringBuffer with the correct size from the start as shown.
Another important point is that creation of extra strings is not limited to ‘overloaded mathematical operators’ (“+”) but there are several methods like conact(), trim(), substring(), and replace() in String classes that generate new string instances. So use StringBuffer for computation intensive operations, which offer better performance.
Q.05: What is serialization? How would you exclude a field of a class from serialization? What is the common use?
Ans: Serialization is a process of reading or writing an object. It is a process of saving an object’s state to a sequence of bytes, as well as a process of rebuilding those bytes back into a live object at some future time. An object is marked serializable by implementing the java.io.Serializable interface, which is only a marker interface -- it simply allows the serialization mechanism to verify that the class can be persisted, typically to a file.

[image: image1.emf]
Transient variables cannot be serialized. The fields marked transient in a serializable object will not be transmitted in the byte stream. An example would be a file handle or a database connection. Such objects are only meaningful locally. So they should be marked as transient in a serializable class.
When to use serialization? A common use of serialization is to use it to send an object over the network or if the state of an object needs to be persisted to a flat file or a database.

Q.06: How can we improve Java I/O performance?
Ans: Java applications that utilise Input/Output are excellent candidates for performance tuning. Profiling of Java applications that handle significant volumes of data will show significant time spent in I/O operations. This means substantial gains can be had from I/O performance tuning. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. The basic rules for speeding up I/O performance are :
1. Minimise accessing the hard disk.

2. Minimise accessing the underlying operating system.
3. Minimise processing bytes and characters individually.
Let us look at some of the techniques to improve I/O performance:
· Use buffering to minimise disk access and underlying operating system. As shown below, with buffering large chunks of a file are read from a disk and then [image: image2.emf]
· Instead of reading a character or a byte at a time, the above code with buffering can be improved further by reading one line at a time as shown below:
FileReader fr = new FileReader(f);

BufferedReader br = new BufferedReader(fr);

While (br.readLine() != null) count++;
By default the System.out is line buffered, which means that the output buffer is flushed when a new line character is encountered. This is required for any interactivity between an input prompt and display of output.
· The line buffering can be disabled for faster I/O operation as follows:

FileOutputStream fos = new FileOutputStream(file);

BufferedOutputStream bos = new BufferedOutputStream(fos, 1024);

PrintStream ps = new PrintStream(bos,false);

System.setOut(ps);

while (someConditionIsTrue)

System.out.println(“blah…blah…”);

}

Q.07: What is the difference between final, finally and finalize() in Java?
Ans: final – handles constant declaration.
finally - handles exception. The finally block is optional and provides a mechanism to clean up regardless of what happens within the try block (except System.exit(0) call). Use the finally block to close files or to release other system resources like database connections, statements etc.
 finalize() - method helps in garbage collection. A method that is invoked before an object is discarded by the garbage collector, allowing it to clean up its state. Should not be used to release non-memory resources like file handles, sockets, database connections etc because Java has only a finite number of these resources and you do not know when the garbage collection is going to kick in to release these non-memory resources through the finalize() method.

Q.08: What is type casting? Explain up casting vs. down casting? When do you get ClassCastException?
Ans: Type casting means treating a variable of one type as though it is of another type. When up casting primitives as shown below from left to right, automatic conversion occurs. But if you go from right to left, down casting or explicit casting is required. Casting in Java is safer than in C or other languages that allow arbitrary casting. Java only lets casts occur when they make sense, such as a cast between a float and an int. However we can't cast between an int and a String.
[image: image3.emf]
When it comes to object references you can always cast from a subclass to a superclass because a subclass object is also a superclass object. You can cast an object implicitly to a super class type (i.e. upcasting). If this were not the case polymorphism wouldn’t be possible.
[image: image4.emf]
We can cast down the hierarchy as well but we must explicitly write the cast and the object must be a legitimate instance of the class you are casting to. The ClassCastException is thrown to indicate that code has attempted to cast an object to a subclass of which it is not an instance. We can deal with the problem of incorrect casting in two ways:
1. Use the exception handling mechanism to catch ClassCastException.

try{

Object o = new Integer(1);

System.out.println((String) o);

}

catch(ClassCastException cce) {

logger.log(“Invalid casting, String is expected…Not an Integer”);

System.out.println(((Integer) o).toString());

}
2. Use the instanceof statement to guard against incorrect casting.

If(v2 instanceof Car) {

Car c2 = (Car) v2;

}

Q.09: Discuss the Java error handling mechanism? What is the difference between Runtime (unchecked) exceptions and checked exceptions? What is the implication of catching all the exceptions with the type “Exception”?
Ans: Errors: When a dynamic linking failure or some other “hard” failure in the virtual machine occurs, the virtual machine throws an Error. Typical Java programs should not catch Errors. In addition, it’s unlikely that typical Java programs will ever throw Errors either.

Exceptions: Most programs throw and catch objects that derive from the Exception class. Exceptions indicate that a problem occurred but that the problem is not a serious JVM problem. An Exception class has many subclasses. These descendants indicate various types of exceptions that can occur. For example, NegativeArraySizeException indicates that a program attempted to create an array with a negative size. One exception subclass has special meaning in the Java language: RuntimeException. All the exceptions except

RuntimeException are compiler checked exceptions. If a method is capable of throwing a checked exception it must declare it in its method header or handle it in a try/catch block. Failure to do so raises a compiler error. So checked exceptions can, at compile time, greatly reduce the occurrence of unhandled exceptions surfacing at runtime in a given application at the expense of requiring large throws declarations and encouraging use of poorlyconstructed try/catch blocks. Checked exceptions are present in other languages like C++, C#, and Python.
[image: image5.emf]
Runtime Exceptions (unchecked exception)

A RuntimeException class represents exceptions that occur within the Java virtual machine (during runtime). An example of a runtime exception is NullPointerException. The cost of checking for the runtime exception often outweighs the benefit of catching it. Attempting to catch or specify all of them all the time would make our code unreadable and unmaintainable. The compiler allows runtime exceptions to go uncaught and unspecified. If we like, we can catch these exceptions just like other exceptions. However, we do not have to declare it in our “throws" clause or catch it in your catch clause. In addition, we can create our own RuntimeException subclasses and this approach is probably preferred at times because checked exceptions can complicate method signatures and can be difficult to follow.

Why is it not advisable to catch type “Exception”? : Exception handling in Java is polymorphic in nature. For example if we catch type Exception in our code then it can catch or throw its descendent types like IOException as well. So if we catch the type Exception before the type IOException then the type Exception block will catch the entire exceptions and type IOException block is never reached. In order to catch the type IOException and handle it differently to type Exception, IOException should be caught first (remember that we can’t have a bigger basket above a smaller basket).
The diagram below is an example for illustration only. In practice it is not recommended to catch type “Exception”. We should only catch specific subtypes of the Exception class. Having a bigger basket (i.e. Exception) will hide or cause problems. Since the RunTimeException is a subtype of Exception, catching the type Exception will catch all the run time exceptions (like NullpointerException, ArrayIndexOut-OfBounds-Exception) as well.
[image: image6.emf]
Why should we throw an exception early? : The exception stack trace helps us pinpoint where an exception occurred by showing us the exact sequence of method calls that lead to the exception. By throwing your exception early, the exception becomes more accurate

and also more specific. Avoid suppressing or ignoring exceptions. Also avoid using exceptions just to get a flow control.
Instead of:
[image: image7.emf]
Use the following code because you get a more accurate stack trace:
[image: image8.emf]
Why should we catch a checked exception late in a catch {} block? : We should not try to catch the exception before your program can handle it in an appropriate manner. The natural tendency when a compiler complains about a checked exception is to catch it so that the compiler stops reporting errors. The best practice is to catch the exception at the appropriate layer (e.g. an exception thrown at an integration layer can be caught at a presentation layer in a catch {} block), where your program can either meaningfully recover from the exception and continue to execute or log the exception only once in detail, so that user can identify the cause of the exception.
Q.10 What is the difference between the JDK 1.02 event model and the event-delegation model introduced with JDK 1.1?
Ans: The JDK 1.02 event model uses an event inheritance or bubbling approach. In this model, components are required to handle their own events. If they do not handle a particular event, the event is inherited by (or bubbled up to) the component's container. The container then either handles the event or it is bubbled up to its container and so on, until the highest-level container has been tried..

In the event-delegation model, specific objects are designated as event handlers for GUI

components. These objects implement event-listener interfaces. The event-delegation

model is more efficient than the event-inheritance model because it eliminates the

processing required to support the bubbling of unhandled events.

Q.11: Explain Java class loaders?
Ans: Class loaders are hierarchical. Classes are introduced into the JVM as they are referenced by name in a class that is already running in the JVM. So how is the very first class loaded? The very first class is especially loaded with the help of static main() method declared in your class. All the subsequently loaded classes are loaded by the classes, which are already loaded and running. A class loader creates a namespace. All JVMs include at least one class loader that is embedded within the JVM called the primordial (or bootstrap) class loader. Now let’s look at non-primordial class loaders. The JVM has hooks in it to allow user defined class loaders to be used in place of primordial class loader. Let us look at the class loaders created by the JVM.
[image: image9.emf]
[image: image10.emf]
Class loaders are hierarchical and use a delegation model when loading a class. Class loaders request their parent to load the class first before attempting to load it themselves. When a class loader loads a class, the child class loaders in the hierarchy will never reload the class again. Hence uniqueness is maintained. Classes loaded by a child class loader have visibility into classes loaded by its parents up the hierarchy but the reverse is not true as explained in the above diagram.
Q.12 Explain static vs. dynamic class loading?
Ans:

[image: image11.emf]
[image: image12.emf]
Q.13 What are “static initializers” or “static blocks with no function names”?
Ans: When a class is loaded, all blocks that are declared static and don’t have function name (i.e. static initializers) are executed even before the constructors are executed. As the name suggests they are typically used to initialize static fields.
[image: image13.emf]
Q.14: What do you mean by polymorphism? Explain.
Ans: Polymorphism – means the ability of a single variable of a given type to be used to reference objects of different types, and automatically call the method that is specific to the type of object the variable references. In a nutshell, polymorphism is a bottom-up method call. The benefit of polymorphism is that it is very easy to add new classes of derived objects without breaking the calling code (i.e. getTotArea() in the sample code shown below) that uses the polymorphic classes or interfaces. When you send a message to an object even though you don’t know what specific type it is, and the right thing happens, that’s called polymorphism. The process used by objectoriented programming languages to implement polymorphism is called dynamic binding. Let us look at some

sample code to demonstrate polymorphism:
Sample code:
[image: image14.emf]
Q.15: What do you mean by Inheritance? Explain.
Ans: Inheritance – is the inclusion of behaviour (i.e. methods) and state (i.e. variables) of a base class in a derived class so that they are accessible in that derived class. The key benefit of Inheritance is that it provides the formal mechanism for code reuse. Any shared piece of business logic can be moved from the derived class into the base class as part of refactoring process to improve maintainability of your code by avoiding code duplication. The existing class is called the superclass and the derived class is called the subclass. Inheritance can also be defined as the process whereby one object acquires characteristics from one or more other objects the same way children acquire characteristics from their parents.
There are two types of inheritances:
1. Implementation inheritance (class inheritance): You can extend an applications’ functionality by reusing functionality in the parent class by inheriting all or some of the operations already implemented. In Java, we can only inherit from one superclass. Implementation inheritance promotes reusability but improper use of class inheritance can cause programming nightmares by breaking encapsulation and making future changes a problem.
With implementation inheritance, the subclass becomes tightly coupled with the superclass. This will make the design fragile because if we want to change the superclass, we must know all the details of the subclasses to avoid breaking them. So when using implementation inheritance, make sure that the subclasses depend only on the behaviour of the superclass, not on the actual implementation. For example in the above diagram the subclasses should only be concerned about the behaviour known as area() but not how it is implemented.
2. Interface inheritance (type inheritance): This is also known as subtyping. Interfaces provide a mechanism for specifying a relationship between otherwise unrelated classes, typically by specifying a set of common methods each implementing class must contain. Interface inheritance promotes the design concept of program to interfaces not to implementations. This also reduces the coupling or implementation dependencies between systems. In Java, you can implement any number of interfaces. This is more flexible than implementation inheritance because it won’t lock you into specific implementations which make subclasses difficult to maintain. So care should be taken not to break the implementing classes by modifying the interfaces.
Which one to use?: Prefer interface inheritance to implementation inheritance because it promotes the design concept of coding to an interface and reduces coupling. Interface inheritance can achieve code reuse with the help of object composition.
[image: image15.emf]
[image: image16.emf]
Q.15: What do you mean by Encapsulation? Explain.
Ans: Encapsulation – refers to keeping all the related members (variables and methods) together in an object. Specifying members as private can hide the variables and methods. Objects should hide their inner workings from the outside view. Good encapsulation improves code modularity by preventing objects interacting with each other in an unexpected way, which in turn makes future development and refactoring efforts easy.

Being able to encapsulate members of a class is important for security and integrity. We can protect variables from unacceptable values. The sample code below describes how encapsulation can be used to protect the MyMarks object from having negative values. Any modification to member variable “vmarks” can only be carried out through the setter method setMarks(int mark). This prevents the object “MyMarks” from having any negative values by throwing an exception.
Sample code
[image: image17.emf]
Q.16: What is the main difference between an ArrayList and a Vector? What is the main difference between Hashmap and Hashtable?
Ans:
[image: image18.emf]
As a general rule, We prefer ArrayList/Hashmap to Vector/Hashtable. If our application is a multithreaded application and at least one of the threads either adds or deletes an entry into the collection then use new Java collection API‘s external synchronization facility as shown below to temporarily synchronize our collections as needed:
Map myMap = Collections.synchronizedMap (myMap);

List myList = Collections.synchronizedList (myList);

Java arrays are even faster than using an ArrayList/Vector and perhaps therefore may be preferable. ArrayList/Vector internally uses an array with some convenient methods like add(..), remove(…) etc.

Q.17: Explain the Java Collection framework?
Ans: The key interfaces used by the collection framework are List, Set and Map. The List and Set extends the Collection interface. We should not confuse the Collection interface with the Collections class which is a utility class.

A Set is a collection with unique elements and prevents duplication within the collection. HashSet and TreeSet are implementations of a Set interface. A List is a collection with an ordered sequence of elements and may contain duplicates. ArrayList, LinkedList and Vector are implementations of a List interface.

The Collection API also supports maps, but within a hierarchy distinct from the Collection interface. A Map is an object that maps keys to values, where the list of keys is itself a collection object. A map can contain duplicate values, but the keys in a map must be distinct. HashMap, TreeMap and Hashtable are implementations of a Map

interface.

Q.18: How do we implement collection ordering? Also explain the role of iterator?
Ans: SortedSet and SortedMap interfaces maintain sorted order. The classes, which implement the Comparable interface, impose natural order. For classes that don’t implement comparable interface, or when one needs even more control over ordering based on multiple attributes, a Comparator interface should be used.

What is an Iterator? An Iterator is a use once object to access the objects stored in a collection. Iterator design pattern (Cursor) is used, which is a behavioural design pattern that provides a way to access elements of a collection sequentially without exposing its internal representation.
[image: image19.emf]
Q.19: What are the benefits of the Java collection framework?
Ans: Collection framework provides flexibility, performance, and robustness.

1. Polymorphic algorithms – sorting, shuffling, reversing, binary search etc.

2. Set algebra - such as finding subsets, intersections, and unions between objects.

3. Performance - collections have much better performance compared to the older Vector and Hashtable classes with the elimination of synchronization overheads.

4. Thread-safety - when synchronization is required, wrapper implementations are provided for temporarily synchronizing existing collection objects.

5. Immutability - when immutability is required wrapper implementations are provided for making a collection immutable.
6. Extensibility - interfaces and abstract classes provide an excellent starting point for adding functionality and features to create specialized object collections.
Q.20: What are some of the best practices relating to Java collection?
Ans:1. Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc, where possible to avoid any synchronization overhead. Even better is to use just arrays where possible. If multiple threads concurrently access a collection and at least one of the threads either adds or deletes an entry into the collection, then the collection must be externally synchronized. This is achieved by:
Map myMap = Collections.synchronizedMap (myMap);

List myList = Collections.synchronizedList (myList);
2. Set the initial capacity of a collection appropriately (e.g. ArrayList, HashMap etc). This is because collection classes like ArrayList, HashMap etc must grow periodically to accommodate new elements. But if you have a very large array, and you know the size in advance then you can speed things up by setting the initial size appropriately.
For example: HashMaps/Hashtables need to be created with sufficiently large capacity to minimize rehashing (which happens every time the table grows). HashMap has two parameters initial capacity and load factor that affect its performance and space requirements. Higher load factor values (default load factor of 0.75 provides a good trade off between performance and space) will reduce the space cost but will increase the lookup cost of myMap.get(…) and myMap.put(…) methods. When the number of entries in the HashMap exceeds the current capacity * loadfactor then the capacity of the HasMap is roughly doubled by calling the rehash function. It is also very important not to set the initial capacity too high or load factor too low if iteration performance or reduction in space is important.
3. Program in terms of interface not implementation: For example you might decide a LinkedList is the best choice for some application, but then later decide ArrayList might be a better choice for performance reason.

Use:

List list = new ArrayList(100); //program in terms of interface & set the initial capacity.

Instead of:

ArrayList list = new ArrayList();

4. Avoid storing unrelated or different types of objects into same collection: This is analogous to storing items in pigeonholes without any labeling. To store items use value objects or data objects (as oppose to storing every attribute in an ArrayList or HashMap). Provide wrapper classes around your collection API classes like ArrayList, Hashmap etc as shown in better approach column. Also where applicable consider using composite design pattern, where an object may represent a single object or a collection of objects.
Q.21: What is the main difference between pass-by-reference and pass-by-value?
Ans: Other languages use pass-by-reference or pass-by-pointer. But in Java no matter what type of argument we pass the corresponding parameter (primitive variable or object reference) will get a copy of that data, which is exactly how pass-by-value (i.e. copy-by-value) works.
In Java, if a calling method passes a reference of an object as an argument to the called method then the passed in reference gets copied first and then passed to the called method. Both the original reference that was passed-in and the copied reference will be pointing to the same object. So no matter which reference you use, you will be always modifying the same original object, which is how the pass-by-reference works as well.
[image: image20.emf]
If your method call involves inter-process (e.g. between two JVMs) communication, then the reference of the calling method has a different address space to the called method sitting in a separate processes (i.e. separate JVM). Hence inter-process communication involves calling method passing objects as arguments to called method by-value in a serialized form, which can adversely affect performance due to marshalling and unmarshalling cost.
Q.22: What are access modifiers?
Ans:

[image: image21.emf]
Q.23: What is a final modifier? Explain other Java modifiers?
Ans: A final class can’t be extended i.e. A final class may not be subclassed. A final method can’t be overridden when its class is inherited. You can’t change value of a final variable (i.e. it is a constant).
[image: image22.emf]
Q.24: Explain Outer and Inner classes (or Nested classes) in Java? When will you use an Inner Class?
Ans: In Java not all classes have to be defined separate from each other. You can put the definition of one class inside the definition of another class. The inside class is called an inner class and the enclosing class is called an outer class. So when you define an inner class, it is a member of the outer class in much the same way as other members like attributes, methods and constructors.
Where should we use inner classes?: Code without inner classes is more maintainable and readable. When we access private data members of the outer class, the JDK compiler creates package-access member functions in the outer class for the inner class to access the private members. This leaves a security hole. In general we should avoid using inner classes. Use inner class only when an inner class is only relevant in the context of the

outer class and/or inner class can be made private so that only outer class can access it. Inner classes are used primarily to implement helper classes like Iterators, Comparators etc which are used in the context of an outer class.
[image: image23.emf]
Outer and inner classes :

[image: image24.emf]
Q.25: What do you know about the Java garbage collector? When does the garbage collection occur?
Ans: Each time an object is created in Java, it goes into the area of memory known as heap. The Java heap is called the garbage collectable heap. The garbage collection cannot be forced. The garbage collector runs in low memory situations. When it runs, it releases the memory allocated by an unreachable object. The garbage collector runs on a low priority daemon (background) thread. We can nicely ask the garbage collector to collect garbage by calling System.gc() but we can’t force it.
What is an unreachable object?: An object’s life has no meaning unless something has reference to it. If we can’t reach it then we can’t ask it to do anything. Then the object becomes unreachable and the garbage collector will figure it out. Java automatically collects all the unreachable objects periodically and releases the memory consumed by those unreachable objects to be used by the future reachable objects.
[image: image25.emf]
Q.26: What is a user defined exception?
Ans: User defined exceptions may be implemented by defining a new exception class by extending the Exception class.

public class MyException extends Exception {

/* class definition of constructors goes here */

public MyException() {

super();

}

public MyException (String errorMessage) {

super (errorMessage);

}

}

Throw and/or throws statement is used to signal the occurrence of an exception. Throw an exception:
throw new MyException(“I threw my own exception.”)
To declare an exception:
public myMethod() throws MyException {…}
Q.27: What is the difference between processes and threads?
Ans: A process is an execution of a program but a thread is a single execution sequence within the process. A process can contain multiple threads. A thread is sometimes called a lightweight process.
[image: image26.emf]
A JVM runs in a single process and threads in a JVM share the heap belonging to that process. That is why several threads may access the same object. Threads share the heap and have their own stack space. This is how one thread’s invocation of a method and its local variables are kept thread safe from other threads. But the heap is not thread-safe and must be synchronized for thread safety.

Q.28: Explain threads blocking on I/O?
Ans: Occasionally threads have to block on conditions other than object locks. I/O is the best example of this. Threads block on I/O (i.e. enters the waiting state) so that other threads may execute while the I/O operation is performed.
When threads are blocked (say due to time consuming reads or writes) on an I/O call inside an object’s synchronized method and also if the other methods of the object are also synchronized then the object is essentially frozen while the thread is blocked.
Be sure to not synchronize code that makes blocking calls, or make sure that a non-synchronized method exists on an object with synchronized blocking code. Although this technique requires some care to ensure that the resulting code is still thread safe, it allows objects to be responsive to other threads when a thread holding its locks is blocked.
Q.29: If 2 different threads hit 2 different synchronized methods in an object at the same time will they both continue?

Ans: No. Only one method can acquire the lock.
[image: image27.emf]
Q.30:What are the usages of Java packages?
Ans: It helps resolve naming conflicts when different packages have classes with the same names. This also helps you organize files within your project. For example: java.io package do something related to I/O and java.net package do something to do with network and so on. If we tend to put all .java files into a single package, as the project gets bigger, then it would become a nightmare to manage all your files.
We can create a package as follows with package keyword, which is the first keyword in any Java program followed by import statements. The java.lang package is imported implicitly by default and all the other packages must be explicitly imported.
package com.xyz.client ;

import java.io.File;

import java.net.URL;
Q.31: What is the difference between extends and implement Runnable?

Which one is advantageous?

Ans: There is no difference between these two. Implement Runnable is advantageous
because interfaces are always better than classes. If we extend thread class, there is no scope any another class, this is the limitation of extends.
If we implement Runnable interface still there is a scope to extend other class.
Q.32: What is the difference between sleep() method and wait() method?
Ans: - Both methods will make the thread wait for some time. When the thread comes out of sleep() method the object may be still locked. When the threads comes out of the wait() method the object is automatically unlocked.
But both methods will wait temporarily. E.g.
[image: image28.emf]
Q.33: What is thread life cycle?
Ans: Life cycle of thread means : from the creation of thread till its termination. The

states assumed by the thread are called life cycle of a thread.
Start run wait (or) blocked state Destroy State
[image: image29.emf]
Q.34: Explain Model View Controller architecture (MVC)?
Ans:. All components in swing follow a Model View Controller (MVC) architecture.
 “Model” stores the data that defines the state of a button (pushed in or not) or text present in a text field.

 “View” creates the visual representation of the component from the data in the model.

 “Controller” deals with user interaction with the component and modifies the model or the view in response to the user action.
Q.35: What is the Applet Life Cycle? Also explain the various methods available in applet class ?

Ans: Applet life Cycle :

init() (start() (stop() (destroy()

Methods available in Applet Class: -
 In an Applet, we will have following methods.
1. public void init(): - It is useful to initialize variables and any parameters. It is also useful to create components and attach to frame. This method is executed immediately when an Applet is loaded into memory. This method is executed only once.
2. public void start(): - start() method is executed after init() method. This method is

executed as long as an applet receives focus. Coe related to opening files, connecting to databases and processing the data is written inside the start() method.
3. public void stop(): - This method is executed when the applet loses the focus (When the application is minimized) code related closing the files, disconnecting from databases, and any cleanup operations is written in stop() method. start(), stop() methods are repeatedly executed when the application (maximize, minimized) receives focuse and loses the focus.
4. public void destroy(): - It will terminate the applet from memory this method executed when the web page is closed.
Q.36: Why are there no global variables in Java?
Ans: Global variables are considered bad form for a variety of reasons: Adding state variables breaks referential transparency (you no longer can understand a statement or expression on its own: you need to understand it in the context of the settings of the global variables), State variables lessen the cohesion of a program: you need to know more to understand how something works. A major point of Object-Oriented programming is to break up global state into more easily understood collections of local state, When you add one variable, you limit the use of your program to one instance. What you thought was global, someone else might think of as local: they may want to run two copies of your program at once. For these reasons, Java decided to ban global variables.
Q.37: Why can’t we say just abs () or sin () instead of Math. abs () and Math. sin()?
Ans: The import statement does not bring methods into our local name space. It lets us abbreviate class names, but not get rid of them altogether. That’s just the way it works, we’ll get used to it. It’s really a lot safer this way.

However, there is actually a little trick we can use in some cases that gets us what we want. If we’re top-level class doesn’t need to inherit from anything else, make it inherit from java.lang.Math. That *does* bring all the methods into our local name space. But we can’t use this trick in an applet, because we have to inherit from java.awt.Applet. And actually, we can’t use it on java.lang.Math at all, because Math is a “final” class which means it can’t be extended.
Q.38: Describe what happens when an object is created in Java?
Ans: Several things happen in a particular order to ensure the object is constructed properly: Memory is allocated from heap to hold all instance variables and implementation-specific data of the object and its superclasses. Implemenation-specific data includes pointers to class and method data. The instance variables of the objects are initialized to their default values. The constructor for the most derived class is invoked. The first thing a constructor does is call the constructor for its superclasses. This process continues until the constructor for java.lang.Object is called, as java.lang.Object is the base class for all objects in java. Before the body of the constructor is executed, all instance variable initializers and initialization blocks are executed. Then the body of the constructor is executed. Thus, the constructor for the base class completes first and constructor for the most derived class completes last.

Q.39: State the significance of public, private, protected, default modifiers both singly and in combination and state the effect of package relationships on declared items qualified by these modifiers.

Ans: public : Public class is visible in other packages, field is visible everywhere (class must be public too).
private : Private variables or methods may be used only by an instance of the same class that declares the variable or method, A private feature may only be accessed by the class that owns the feature.
protected : Is available to all classes in the same package and also available to all subclasses of the class that owns the protected feature.This access is provided even to subclasses that reside in a different package from the class that owns the protected feature.

default : What we get by default i.e., without any access modifier (i.e., public private or protected).It means that it is visible to all within a particular package.

Q.40: Give a simplest way to find out the time a method takes for execution without using any profiling tool?

Ans: Read the system time just before the method is invoked and immediately after method returns. Take the time difference, which will give you the time taken by a method for execution.
To put it in code...

long start = System.currentTimeMillis ();

method ();

long end = System.currentTimeMillis ();

System.out.println ("Time taken for execution is " + (end - start));

Remember that if the time taken for execution is too small, it might show that it is taking zero milliseconds for execution. Try it on a method which is big enough, in the sense the one which is doing considerable amount of processing.
Q.41: What are wrapper classes? Why do we need wrapper classes?

Ans: Java provides specialized classes corresponding to each of the primitive data types. These are called wrapper classes. They are e.g. Integer, Character, Double etc.

 It is sometimes easier to deal with primitives as objects. Moreover most of the collection classes store objects and not primitive data types. And also the wrapper classes provide many utility methods also. Because of these reasons we need wrapper classes. And since we create instances of these classes we can store them in any of the collection classes and pass them around as a collection. Also we can pass them around as method parameters where a method expects an object.
Q.42: What is the basic difference between the 2 approaches to exception handling.

1. try catch block and

2. specifying the candidate exceptions in the throws clause?

When should you use which approach?

Ans: In the first approach as a programmer of the method, we ourselves are dealing with the exception. This is fine if we are in a best position to decide should be done in case of an exception. Whereas if it is not the responsibility of the method to deal with its own exceptions, then do not use this approach. In this case use the second approach.
 In the second approach we are forcing the caller of the method to catch the exceptions that the method is likely to throw. This is often the approach library creators use. They list the exception in the throws clause and we must catch them. We will find the same approach throughout the java libraries we use.
Q.43: Can applets communicate with each other?

Ans: Applets may communicate with other applets running in the same virtual machine. If the applets are of the same class, they can communicate via shared static variables. If the applets are of different classes, then each will need a reference to the same class with static variables. In any case the basic idea is to pass the information back and forth through a static variable.

An applet can also get references to all other applets on the same page using the getApplets() method of java.applet.AppletContext. Once we get the reference to an applet, we can communicate with it by using its public members.

It is conceivable to have applets in different virtual machines that talk to a server somewhere on the Internet and store any data that needs to be serialized there. Then, when another applet needs this data, it could connect to this same server.
Q.44: What are the steps in the JDBC connection?

Ans: While making a JDBC connection we go through the following steps :

Step 1 : Register the database driver by using :
Class.forName(\" driver class for that specific database\");

Step 2 : Now create a database connection using :

Connection con = DriverManager.getConnection(url,username,password);

Step 3: Now Create a query using :

Statement stmt = Connection.Statement(\"select * from TABLE NAME\");

Step 4 : Execute the query :

stmt.exceuteUpdate();
Q.45: What is the difference between instanceof and isInstance?
Ans: instanceof is used to check to see if an object can be cast into a specified type without throwing a cast class exception. isInstance() determines if the specified object is
assignment compatible with the object represented by this Class. This method is the dynamic equivalent of the Java language instanceof operator. The method returns true
if the specified Object argument is nonnull and can be cast to the reference type represented by this Class object without raising a ClassCastException. It returns false
otherwise.
Q.46: What is memory leak?
Ans: A memory leak occurs when all references (pointers) to a piece of allocated memory are overwritten, cleared, or pass out of scope. The result is that the program simply "forgets" about that particular piece of memory.Unfortunately , the operating environment (usually an OS) is not aware of the application's amnesia. That memory is treated by the outside world as though it still belongs to the application. The memory is therefore completely unavailable;it has "leaked". (In the worst case, the memory can become unavailable to all applications in the system, even if the application that created the leak is terminated. The memory can only be reclaimed by rebooting the system.)
Q.47: Explain GridBagLayout?

Ans: GridBagLayout organizes/arranges all GUI controls to a grid. However, these controls are of different sizes and may occupy more than one row or column of the grid. These rows and columns may have different sizes as well. It is by far most powerful layout manager and requires good practice and understanding to use. It can combine the features of Border, Flow and Card layouts and capable of much more.

GridBag layout divides its container into an array of cells, different cell rows can have different heights, and different cell columns can have different widths. A component can occupy part or all of a region. While a region is spanned over a single cell or a rectangle made up of multiple cells. A helper class called GridBagConstraints is used to hold all the layout position information. The add(Component, Object) version of the add() method is used for adding a control, passing an instance of GridBagConstraints as the Object parameter.
Q.48: What are the problems faced by java programmers in the absence of layout managers?
Ans: If relevant layout managers are not used while designing a GUI then GUI controls will have haphazard/inconsistent display across multiple windowing systems.These GUI controls will neglect their common sizing and positioning that ideally should be same across various windowing systems. In order to counter this issue, an appropriate layout which is applicable for container object, must be chosen.
Q.49: What is the difference between GridLayout & GridBagLayout manager?

Ans: GridLayout class lays all components in a rectangular grid like structure of container. The container is divided into an equal sized rectangles and each component is placed inside a rectangle.

The GridBagLayout class is a flexible layout manager that aligns components vertically and horizontally, without requiring that the components be of the same size. Each GridBagLayout object maintains a dynamic, rectangular grid of cells, with each component occupying one or more cells, called its display area.

Each component managed by a GridBagLayout is associated with an instance of GridBagConstraints. The constraints object specifies where a component's display area should be located on the grid and how the component should be positioned within its display area. In addition to its constraints object, the GridBagLayout also considers each component's minimum and preferred sizes in order to determine a component's size.
Q.50: Differentiate between a Java Class & Java Bean?

Ans: What differentiates Beans from typical Java classes is introspection. The tools that recognize predefined patterns in method signatures and class definitions can "look inside" a Bean to determine its properties and behavior. A Bean's state can be manipulated at the time it is being assembled as a part within a larger application. The application assembly is referred to as design time in contrast to run time. In order for this scheme to work, method signatures within Beans must follow a certain pattern in order for introspection tools to recognize how Beans can be manipulated, both at design time, and run time.

