Guru Tegh Bahadur Institute of Technology, New Delhi

Lesson Plan for (Algorithm Design & Analysis)

Course Name: B.Tech. Semester: 5th

SUB CODE: ETCS 301

No of hours allotted to complete the syllabi: **40** No of hours allotted per week: **4**

S.No	Topic Details	No of	Reference/text book
		Hours Planne	
		d	
1.	Unit-I: Asymptotic notations for time	1	T1,R1
	and space complexity, Big-Oh		
	notation, the little-oh notation, the little-omega notation.		
	Recurrence relations: iteration method, recursion tree method, substitution method, master method (with proof), subtract	4	T1, R2
	and conquer master method(with proof)		
	Data Structures for Disjoint Sets, Medians and Order statistics.	2	T1
	Complexity analysis, Insertion sort, Merge Sort, Quick sort.	2	T1, R2
	Strassen's algorithm for Matrix Multiplications.	1	T1, R1
2.	Unit-II		
	Dynamic Programming:		
	Ingredients of Dynamic	2	T1, T2, R3

	D ' 1'		
	Programming, emphasis on		
	optimal substructure,		
	overlapping substructures,		
	memorization.		
	Matrix Chain Multiplication Longest common subsequence Optimal binary search trees problems.0-1 knapsack problem. Binomial coefficient computation through dynamic programming. Floyd Warshall algorithm.	7	T1, T2, R1
3.	Unit-III		T1, T2
	Crussday Alassidhanay Elsay suta	1	
	Greedy Algorithms: Elements	1	
	of Greedy strategy, overview		
	of local and global optima,		
	matroid		T1, T2, R4
	A .* */ 1 .* 11		
	Activity selection problem,	4	
	Fractional Knapsack problem,	4	
	Fractional Knapsack problem, Huffman Codes, A task	4	
	Fractional Knapsack problem, Huffman Codes, A task scheduling problem.	4	T1, R4
	Fractional Knapsack problem, Huffman Codes, A task scheduling problem.	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees:	4 5	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra's and	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra's and Bellman Ford Algorithm(with	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra's and Bellman Ford Algorithm(with proof of correctness of	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra's and Bellman Ford Algorithm(with proof of correctness of algorithms).	4	T1, R4
	Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra's and Bellman Ford Algorithm(with proof of correctness of algorithms).	4	T1, R4

4.	UNIT – IV		
	String matching: The naïve String Matching algorithm, The Rabin-Karp Algorithm, String Matching with finite automata, The Knuth-Morris Pratt algorithm.	5	T1, R1
	NP-CompleteProblem:Polynomial-timeverification,NP-CompletenessandReducibility	2	T1, R1
	NP-Completeness Proof NP –hard, Case study of NP- Complete problems (vertex cover problem, clique problem).	3	T1, R1

Text Books:

- [T1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein, "Introduction to Algorithms", 3rd Ed., PHI, 2013.
- [T2] Jon Klenberg, Eva Tardos, "Algorithm Design", Pearson Publications, 2014

Reference Books:

- [R1] Sara Basse, "introduction to Design & analysis", Pearson
- [R2] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Computer Algorithms/C++ "Second Edition, Universities Press.
- [R3] A. V. Aho, J. E. Hopcroft, J. D. Ullman, "The Design and Analysis of Computer Algorithms", Pearson Publication, 2013.
- [R4] Richard Neapolitan, "Foundations of Algorithms", Fifth Edition, Jones & Bartlett Learning