Lesson Plan for Applied Mathematics – II (BS-112)

Subject : Applied Mathematics – II

Total Teaching Weeks : 16

Subject Code : BS-112

Credit:04

1
1
1
1
1
1
1
1
1
1
1
1
-
1
1
1
1
1
1
1

	UNIT - III	
18	Laplace Transforms: Definitions and existence	1
	(without proof), properties,	
19	First Shifting Theorem (Shifting), Transforms of	1
	Derivatives and Integrals and ODEs, Unit Step	
	Function (Heaviside Function).	
20	Second Shifting Theorem (t-Shifting), Short	1
	Impulses	
21	Dirac's Delta Function	1
22	Partial Fractions, Convolution. Integral Equations,	1
	Differentiation and Integration of Transforms	
23	Solution of ODEs with Variable Coefficients,	1
	Solution of Systems of ODEs	
24	Inverse Laplace transform and its properties	1
25	Fourier Analysis: Fourier Series, Arbitrary Period,	1
	Even and Odd Functions.	
26	Half-Range Expansions, Sturm–Liouville Problems	1
27	Fourier Integral, Fourier Cosine and Sine	1
	Transforms, Fourier Transform	
28	Usage of fourier analysis for solution of ODEs	1
29	Inverse Fourier transform and its properties	1
	UNIT - IV	
30	Partial Differential Equations (PDEs): Basic Concepts	1
	of PDEs.	
31	Modeling: Vibrating String, Wave Equation. Solution	1
	by Separating Variables.	
32	Use of Fourier Series. D'Alembert's Solution of the	1
	Wave Equation.	
33	Characteristics. Modeling: Heat Flow from a Body in	1
	Space. Heat Equation: Solution by Fourier Series.	
34	Steady Two-Dimensional Heat Problems. Dirichlet	1
	Problem.	
35	Heat Equation: Modeling Very Long Bars.	1
36	Solution by Fourier Integrals and Transforms.	1
37	Modeling: Membrane, Two-Dimensional Wave	1
	Equation.	
38	Rectangular Membrane. Laplacian in Polar	1
	Coordinates. Circular Membrane.	
39	Laplace's Equation in Cylindrical and Spherical	1
40	Coordinates.	
40	Potential. Solution of PDEs by Laplace Transforms.	1