GURU TEGH BAHADUR INSTITUTE OF TECHNOLOGY NEW DELHI

COMPUTATIONAL METHODS
 SEM-3

ES - 201

UNIT-I

ASSIGNMENT-1

Q1. Roundoff the following numbers correct to four significant figures:
$3.26425,687.543,4985561,0.70035,0.00032217$, 18.265101 .

Q2. Find the roundoff error in sorting the number 752.6835 using the four-digit mantissa.

Q3. If 0.333 is the approximate value of $\frac{1}{3}$,find absolute, relative and percentage errors.

Q4. Find the difference $X=\sqrt{5.36}-\sqrt{5.35}$ and evaluate the relative of the result.

Q5. Roundoff the number the numbers 865250 and 37.46235 to four significant figures and compute $\quad E_{a}, E_{r}$ and E_{p}.

Q6. Find absolute error and relative error in $\sqrt{6}+\sqrt{7}+\sqrt{8}$ correct to 4 significant digits

Q7. Explain different types of errors.

Assignment-2

Q1. The error in the measurement of radius of the sphere is 0.3% what is the permissible error in its surface area?

Q2. Write the statement of mean value theorem.

Q3. Find a root of the equation $x^{3}-4 x-9=0$ using bisection method in four stages.

Q4. Find a root of the equation $x=e^{-x}$, correct to three decimal places by secant method.

Q5. Solve the equation $\log x=\cos x$ to five decimals by Newton-Raphson Method.

Q6. Explain Secant method. Find root of equation $x^{3}-5 x+1$ $=0$ by secant method to correct 3 places of decimal.

Q7. If $u=\frac{4 x^{2} y^{3}}{z^{4}}$ and errors in x, y, z be 0.001 , find relative maximum error in u if $x=y=z=1$.

Assignment-3

Q1. Perform four iterations of the Newton's-Raphson Method to obtain the approximate value of $(14)^{1 / 2}$ starting with the initial approximation $x_{0}=4$.

Q2. Obtain $\sqrt[5]{12}$, to five places of decimals by Newton's Raphson Method.

Q3. Find the cube root of 10 .

Q4. Minimize $f(x)=x^{2}$ over $(-5,15), \mathrm{n}=5$ by Fibonacci search method.

Q5. Minimize $f(x)=x^{2}+\frac{54}{x}$ in interval (0,5), using Fibonacci Search Method.

Assignment-4

Q1. Minimize $f(x)=4 x^{3}+x^{2}-7 x+14$ within the interval $(0,1)$ using Golden Section Method.
Q2. Find minimum value of $f\left(x_{1} x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}$ using steepest descent method such that $\left|f\left(X_{k+1}\right)-f\left(X_{k}\right)\right|<$ 0.05 taking starting point $X_{1}=\left(1, \frac{1}{2}\right)^{T}$.

Q3. Use steepest Descent Method

$$
f\left(x_{1} x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
$$

Starting from the point $X_{1}=(0,0)$

Q4. Minimize

$$
f\left(x_{1} x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
$$

By taking the Starting point as $X_{1}=[0,0]^{T}$ by Newton Method.

Q5. Use Nelder-Mead Method to find minimum of $f(x, y)=x^{2}-4 x+y^{2}-y-x y$
Given vertices are $V_{1}=(0,0), V_{2}=(1.2,0)$ and $V_{3}=$ $(0,0.8)$

UNIT-II

ASSIGNMENT-1

Q1. Evaluate the following :

1) $\Delta e^{x} \log 2 x$
2) $\Delta\left(\frac{x^{2}}{\cos 2 x}\right)$

Q2. . Evaluate $\Delta^{4}[(1-2 x)(1-3 x)(1-4 x)(1-x)]$, where interval of differencing is unity.

Q3. Prove that $\Delta^{3} y_{3}=\nabla^{3} y_{6}$.

Q4. Form the forward difference table for the function

$$
f(x)=x^{3}-2 x^{2}-3 x-1 \text { for } x=0,1,2,3,4
$$

Find $\Delta^{3} f(x)$ and also show that $\Delta^{4} f(x)=0$

Q5. If for a polynomial, five observations are recorded as :

$$
y_{1}=-6, y_{2}=22, y_{3}=148, y_{4}=492, \text { find } y_{5}
$$

ASSIGNMENT-2

Q1. Use the concept of missing data find y_{5} if

$$
y_{1}=-6, y_{2}=22, y_{3}=148, y_{4}=492 .
$$

Q2. Find the missing values in the following table:

\boldsymbol{x}	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$
$\boldsymbol{f}(\boldsymbol{x})$	6	$?$	13	17	22	$?$

Q3. From the following data, estimate the number of students obtained marks between 40 and 45 .

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of Students	31	42	51	35	31

Q4. Find the cubic polynomial with given set of points:

x	0	1	2	3
$f(x)$	5	6	3	14

Hence, evaluate $f(0.5)$.

Q5. For the given set of values, evaluate $\cos 22^{\circ}$ and $\cos 73^{\circ}$, using suitable interpolation techniques.

x	10°	20°	30°	40°	50°	60°	70°	80°
$\cos x$	0.9848	0.9397	0.8660	0.7660	0.6428	0.5000	0.3420	0.1737

ASSIGNMENT-3

Q1. Estimate f(2) from the following data, using Newton's divided difference method.

x	0	1	3	6
y	1	3	55	343

Q2. Find $\log _{10} 656$, given that $\log _{10} 654=2.8156, \log _{10} 658=$ $2.8182, \log _{10} 659=2.8189, \log _{10} 661=2.8202$.

Q3. Find the polynomial of the lowest degree which assumes the values $1,27,64$ for x taking the values $1,3,4$ respectively, using Lagrange's interpolation formula and hence find $\mathrm{f}(2)$.

Q4. Estimate $f(7)$ from the following data, using Lagrange's interpolation formula:

x	5	6	9	11
y	12	13	14	16

Q5. Find the $4^{\text {th }}$ order divided differences from the given data:

x	0.5	1.5	3.0	5.0	6.5	8.0
y	1.625	5.875	31	131	282.125	521

ASSIGNMENT-4

Q1. Use Romberg's method to compute $\int_{0}^{1} \frac{d x}{1+x^{2}}$ correct to four decimal places.

Q2. Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by Gauss's formula for $\mathrm{n}=2,4$.

Q3. Use Romberg's method to compute $\int_{0}^{\pi / 2} \sin x d x$ correct to five decimal places.

Q4. Compute $\int_{5}^{12} \frac{d x}{x}$ using 3-point Gauss Quadrature formula.

Q5. Write the assumptions for interpolation.

UNIT-III

Assignment-1

Q1. Test for consistency and solve the system

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

Q2. Show that equations

$$
\begin{aligned}
& 2 x+y=-11 \\
& 6 x-20 y-6 z=-3 \\
& 6 y-18 z=-3
\end{aligned}
$$

are not consistent.

Q3. For what value of k the equations

$$
\begin{aligned}
& x+y+z=1 \\
& 2 x+y+4 z=k \\
& 4 x+y+10 z=k^{2}
\end{aligned}
$$

have a solution and solve them completely in each case?

Q4. Solve the following system by Gauss's Elimination Method.

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

Q5. Solve the system of equations

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x+3 y+4 z=20 \\
& 2 x+y+3 z=13
\end{aligned}
$$

Using Gauss elimination method with partial pivoting.

Assignment-2

Q1. Apply Gauss -Jordan method to solve:

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

Q2. Solve the following equations by Gauss Jordan Method

$$
\begin{aligned}
& x+2 y+z-u=-2 \\
& x+y+3 z-2 u=-6 \\
& 2 x+3 y-z+2 u=7 \\
& x+y+z+u=2
\end{aligned}
$$

Q3. Solve the following set of equations by Crout's method

$$
\begin{aligned}
& 2 x+y+4 z=12 \\
& 8 x-3 y+2 z=20 \\
& 4 x+11 y-z=33
\end{aligned}
$$

Q4. Solve

$$
\begin{gathered}
25 x+15 y-5 z=35 \\
15 x+18 y+0 z=33 \\
-5 x+0 y+11 z=6
\end{gathered}
$$

Using Cholesky's decomposition, method.

Q5. Find the eigen values and eigen vectors of matrix

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
0 & 2 & 6 \\
0 & 0 & 5
\end{array}\right]
$$

Assignment-3

Q1. Determine the characteristic roots and the corresponding characteristic vectors of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

Q2. Obtain by power method, the numerically dominant eigen values and eigen vector of the matrix

$$
A=\left[\begin{array}{ccc}
15 & -4 & -3 \\
-10 & 12 & -6 \\
-20 & 4 & -2
\end{array}\right]
$$

Q3. Find by the Power method the largest eigen value of the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Q4. Find the inverse of the matrix $\left[\begin{array}{ccc}-2 & 4 & 8 \\ -4 & 18 & -16 \\ -6 & 2 & -20\end{array}\right]$ by Doolittle Method.

Q5. Use factorization method, find the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
2 & -2 & 4 \\
2 & 3 & 2 \\
-1 & 1 & -1
\end{array}\right]
$$

Assignment-4

Q1. Determine whether this function is a first-degree spline function

$$
S(x)=\left\{\begin{array}{lr}
x & x \in[-1,0] \\
1-x & x \in(0,1) \\
2 x-2 & x \in[1,2]
\end{array}\right.
$$

Q2. Determine whether the following function is a quadratic spline function

$$
Q(x)=\left\{\begin{array}{lr}
x^{2} & -10 \leq x \leq 0 \\
-x^{2} & 0 \leq x \leq 1 \\
1-2 x & 1 \leq x \leq 20
\end{array}\right.
$$

Q3. check the given function is cubic splines

$$
f(x)=\left\{\begin{array}{lr}
5 x^{3}-3 x^{2} & -1 \leq x \leq 0 \\
-5 x^{3}-3 x^{2} & 0 \leq x \leq 1
\end{array}\right.
$$

Q4. Calculate the natural cubic spline interpolating the data

X	1	2	3	4
Y	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

Take $\quad M_{0}=M_{3}=0$

Q5. Obtain the cubic spline approximation for the function defined by the data

$$
\begin{array}{cccccc}
& \mathrm{X} & : & 0 & 1 & 2 \\
& \mathrm{f}(\mathrm{x}) & : & 1 & 2 & 33 \\
\text { with } & M_{0}= & 0, & M_{2}=0 & \text { and hence find } \mathrm{f}(1.5)
\end{array}
$$

UNIT-IV

ASSIGNMENT-1

Q1. Solve the following initial value problems using Euler's method:
$y^{\prime}=t+y, y(1)=0$. Computer $y(1.2)$ using $\mathrm{h}=0.1$.
Q 2 . Solve the initial value problem
$y^{\prime}=(t / y), y(0)=1$
using Euler's method with $h=0.2$ to get $y(0.2)$. Then, repeat application of the method with $h=0.1$ to get another estimate of $y(0.2)$. Extrapolate the results assuming that errors are proportional to the step size and compare the result with the exact solution.

Q3. Consider the initial value problem $y^{\prime}=x(y+x)-2, y(0)=2$.
Use Euler's method with step sizes $h=0.3, h=0.2$ and $h=0.15$ to compute approximations to $y(0.6)$ (to 5 decimal places)

Q4. Use the Taylor series method to solve the initial value problem
$u^{\prime}=t^{2}+u^{2}, u(0)=1$ for the interval (00.4) using two subintervals of length 0.2.

Q5. Apply Taylor series method to integrate $y^{\prime}=2 t+3 y, y(0)=1, t \in(0,0.4)$ with $h=0.1$

Q6. Solve the following using Picard's method:
(i) $y^{\prime}=x+y^{2}, y(0)=0$. Find $y(0.3)$ to four decimal places.
(ii) $y^{\prime}=2-\frac{y}{x}, y(1)=2$. Find $y(1.2)$ to four decimal places.
(iii) $y^{\prime}=y+e^{x}, y(0)=0$. Find $y(1)$.
(iv) $y^{\prime}=x^{2}+\frac{y}{2}, y(0)=1$. Find $y(0.5)$.
(v) $y^{\prime}=1-x y, y(0)=0$. Find $y(1)$.

Q7. Solve $y^{\prime}=y-2 x^{2}+1, y(0)=0.5$ with step size $h=0.2$ to find $y(1)$ using Modified Euler's method.

ASSIGNMENT-2

Q1. The following IVP is given:

$$
y^{\prime}=2 x+3 y, y(0)=1
$$

Use Taylor's series method to get $y(0.4)$ with step length $h=0.1$.
Q2. Apply Taylor series method to compute $y(0.2)$ from $y^{\prime}-4 y=0$ given that $y(0)=1$

Q3. Solve by using Picard's method:

$$
\frac{d y}{d x}=2 x-y \text { given that } \mathrm{y}=0.9 \text { at } \mathrm{x}=0 .
$$

Solve for $\mathrm{x}=0.2,0.4$ and 0.6 and check with exact values.
Q4. Solve $\frac{d y}{d x}=x+y$ with $y(0)=1$ at $x=0.0(0.2) 0.8$.
Q5. Use Modified Euler's method to obtain $y(0.2), y(0.4)$ and $y(0.6)$ correct to three decimal places given by $\frac{d y}{d x}=y-x^{2}$ with initial condition $y(0)=1$.

Q6. Solve $\frac{d y}{d x}=\log (x+y), y(0)=2$ for $y(0.3)$ by RK4 method in two steps.

ASSIGNMENT-3

Q1. Find the value of y when $x=0.1 \& 0.2$ given $y(0)=1$ and $y^{\prime}=$ $x^{2}-y$ using Modified Euler's method.

Q2. Use Picard's method to find the starting values $0.2,0.4,0.6$, where $y^{\prime}=x-y^{2}$ in range $0 \leq x \leq 1$ s.t. $y(0)=0$. Find the solution at $\mathrm{x}=1$ using Milne's method.

Q3. Find the value of $y(0.20)$ for IVP:

$$
\frac{d y}{d x}=y^{2} \sin x ; y(0)=1, \text { using Milne's method taking } \mathrm{h}=0.05
$$

Q4. Given $\frac{d y}{d x}=x^{2}(1+y)$ and $\mathrm{y}(1)=1, \mathrm{y}(1.1)=1.233, \mathrm{y}(1.2)=1.548$, $y(1.3)=1.979$. Evaluate $y(1.4)$.

Q5. Find the value of $y(0.20)$ and $y(0.25)$ from $y^{\prime}=2 y-y^{2}$ with $\mathrm{y}(0)=1, \mathrm{~h}=0.05$.

Q6. Solve IVP : $u^{\prime}=-2 t u^{2}, u(0)=1$ with $\mathrm{h}=0.2$ on the interval [$0,0.4]$. Use the fourth order Runge-Kutta method and compare with the exact solution.

