ASSIGNMENT 1 (AIDS-209)

Probability Statistics \& Linear Algebra

1. Two six-sided dice are rolled. What is the probability that the sum of the two numbers is 7 , given that at least one of the dice shows a 4 ?
2. A continuous random variable X has a pdf $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find a and b such that

$$
P(X \leq a)=P(X>a) . P(X>b)=0.05 .
$$

3. Let X be a random variable with pdf $f(x)=\left\{\begin{array}{l}\frac{1}{3} e^{\frac{-x}{3}}, x \geq 1 \\ 0, \text { otherwise }\end{array}\right.$,
Find (a). $P(X>5)$
(b) $\mathrm{E}(\mathrm{X})$
(c) $\operatorname{Var}(\mathrm{X})$.
4. In a distribution, the mean is 60 , and the standard deviation is 8 . Use Chebyshev's Inequality to estimate the proportion of data that falls within 44 and 76.
5. Three urns are there containing white and black balls; first urn has 3 white and 3 black balls, second urn has 2 white and 3 black balls and third urn has 4 white and 2 black balls. Without any biasing one urn is chosen from that one ball is chosen randomly which was white. What is probability that it came from the third urn?

ASSIGNMENT 2 (AIDS-209)

Probability Statistics \& Linear Algebra

1. A sortie of 20 aeroplanes is sent on an operational flight. The chances that an aeroplane fails to return is 5%. Find the probability that (i) one plane does not return (ii) at the most 5 planes do not return, and (iii) what is the most probable number of returns?
2. X is a Poisson variable and it is found that the probability that X $=0$ is two-thirds of the probability that $\mathrm{X}=1$. Find the probability that $X=0$ and the probability that $X=3$. What is the probability that X exceeds 3 .
3. ABC Company has 2,000 accounts receivable. The mean and standard deviation are $\$ 300$ and $\$ 50$, respectively. Assume that the accounts are normally distributed.
a. How many accounts exceed $\$ 400$?
b. What is the probability that an account selected at random will be between $\$ 200$ and $\$ 350$?
c. Forty percent of the accounts exceed what dollar amount? (Hint: Fifty percent of the accounts are for more than $\$ 300$.)
d. Twenty percent of the accounts are below what dollar amount?
4. Find the correlation co-efficient for the following data

x	78	89	97	69	59	79	68	57
y	125	137	156	112	107	138	123	108

5. Find the Rank Correlation for the following data:

x	56	42	72	36	63	47	55	49	38
y	147	125	160	118	149	128	150	145	115

ASSIGNMENT 3 (AIDS-209)

Probability Statistics \& Linear Algebra

1. Given the data points $(1,4),(2,6),(3,9),(4,11),(5,17)$ fit a second-degree polynomial. What is the equation of the parabola?
2. Test the hypothesis that the mean of Group A ($n=25$, mean $=45$, $s=8)$ is equal to the mean of Group $B(n=30$, mean $=50, s=10)$ using a t -test.
3. Fit a straight line to the following data. Also estimate the value of Y at $\mathrm{X}=70$

x	71	68	73	69	67	65	66	67
y	69	72	70	70	68	67	68	64

4. Compare the average scores of two different teaching methods: Method A ($\mathrm{n} 1=20$, mean $=75, \mathrm{~s} 1=10$) and Method B $(\mathrm{n} 2=25$, mean $=80$, $\mathrm{s} 2=12$). Test the hypothesis that there is no difference in the effectiveness of the two methods.
5. Consider the data set: $(1,2),(2,5),(3,10),(4,17)$. Fit a polynomial of degree 3 .
What is the equation of the curve?

ASSIGNMENT 4 (AIDS-209)

Probability Statistics \& Linear Algebra

1. Solve the system of linear equations using Cramer's Rule:

$$
\begin{gathered}
3 x+2 y+z=7 \\
2 x-y+2 z=2 \\
x+3 y-z=1
\end{gathered}
$$

2. Given a matrix $C=\left[\begin{array}{ll}4 & 2 \\ 2 & 5\end{array}\right]$, compute the LU-Decomposition of C.
3. Given a matrix $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, compute the Singular Value Decomposition of B.
4. Determine whether the set of all 2×2 matrices forms a Euclidean vector space. Justify your
5. Assume that

$$
u=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad v=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad w=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Make the set $\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}$ orthogonal.

