PaperCode: ES-101 / ES-102					aper: P	rogram	ning in	`C′			L T/	PC	
											3 -	3	
Marking Scheme:													
1. Tea	achers C	ontinuo	us Evalu	ation: 2	25 mark	s							
2. Ter	m end 1	Theory E	xamina	tions: 7	5 marks								
Instruc	Instructions for paper setter:												
 There should be 9 questions in the term end examinations question paper. 													
2. The	2. The first (1") question should be compulsory and cover the entire syllabus. This question												
sho	should be objective, single line answers or short answer type question of total 15 marks.												
3. Apart from question 1 which is compulsory, rest of the paper shall consist of 4 units as per													
the	the syllabus. Every unit shall have two questions covering the corresponding unit of the												
syll	syllabus. However, the student shall be asked to attempt only one of the two questions in the												
unit	unit. Individual questions may contain upto 5 sub-parts / sub-questions. Each Unit shall have												
a marks weightage of 15.													
4. The questions are to be framed keeping in view the learning outcomes of the course / paper.													
textback													
Exclusion.													
s. The requirement of (scientific) calculators / log-lables / data - tables may be specified in													
Course Objectives:													
1.	1. To impart basis knowledge about simple algorithms for arithmetic and logical problems												
1.	so that students can understand how to write a program, syntax and logical errors in 'C'												
2.	To impart knowledge about how to implement conditional branching iteration ar										n and		
	recursion in 'C'.												
3:	To impart knowledge about using arrays pointers files union and structures to develop											evelop	
	algorit	hms and	d progra	ms in '(-,-,	,	,				P	
4:	To im	part kno	wledge	about	how to	approa	ch for d	ividing	a probl	em into	sub-pro	oblems	
1.00	and so	lve the	problem	in 'C'.									
Course Outcomes (CO):													
C01	Ability to develop simple algorithms for arithmetic and logical problems and implement												
	the	em in 'C	·. ·					5					
CO2	Ability to implement conditional branching, iteration and recursion and functions in 'C'												
CO3	Ability to use arrays, pointers, union and structures to develop algorithms and programs												
	in 'C'.				5.03 C C							-	
CO4	Ability to decompose a problem into functions and synthesize a complete program using												
	divide and conquer approach in 'C'.												
Course Outcomes (CO) to Programme Outcomes (PO) Mapping (scale 1: low, 2: Medium, 3:													
High)													
CO/PO	P001	P002	P003	P004	P005	P006	P007	POOB	P009	P010	P011	P012	
CO1	3	3	2	1	1	-	-	•	2	1	1	3	
CO2	3	3	2	1	1	-	-	-	2	1	1	3	
CO3	3	3	3	1	1	-	-	-	2	1	1	3	
CO4	3	3	3	1	1	-	-	-	2	1	1	3	

Unit I

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages, creating and running programs, Preprocessor, Compilation process, role of linker, idea of invocation and execution of a programme. Algorithms: Representation using flowcharts, pseudocode.

Introduction to C language: History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types, I/O statements. Interconversion of variables.

Operators and expressions: Operators, arithmetic, relational and logical, assignment operators, increment and decrement operators, bitwise and conditional operators, special operators, operator precedence and associativity, evaluation of expressions, type conversions in expressions.[8Hrs][T2]

Unit II

Control structures: Decision statements; if and switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements.

Arrays: Concepts, One dimensional array, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi-dimensional arrays.

Functions: User defined and built-in Functions, storage classes, Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion.

Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions. [8Hrs] [T2]

Unit III

Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, functions returning pointers, Dynamic memory allocation. Pointers to functions. Pointers and Strings

Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, self-referential structures, unions, typedef, enumerations.

File handling: command line arguments, File modes, basic file operations read, write and append. Scope and life of variables, multi-file programming. [8Hrs][T2]

Unit IV

C99 extensions. 'C' Standard Libraries: stdio.h, stdlib.h, assert.h, math.h, time.h, ctype.h, setjmp.h, string.h, stdarg.h, unistd.h [3Hrs] [T1, R8] Basic Algorithms: Finding Factorial, Fibonacci series, Linear and Binary Searching, Basic Sorting

Basic Algorithms: Finding Factorial, Fibonacci series, Linear and Binary Searching, Basic Softing Algorithms- Bubble sort, Insertion sort and Selection sort. Find the square root of a number, array order reversal, reversal of a string [7Hrs][T1]

Textbooks:

- 1. How to solve it by Computer by R. G. Dromey, Prentice-Hall India EEE Series, 1982.
- 2. The C programming language by B W Kernighan and D M Ritchie, Pearson Education, 1988.

References:

- 1. Programming Logic & Design by Tony Gaddis, Pearson, 2nd Ed. 2016.
- 2. Programming Logic and Design by Joyce Farrell, Cengage Learning, 2015.
- 3. Engineering Problem Solving With C by Delores M. Etter, Pearson, 2013.
- 4. Problem Solving and Program Design in C by Jeri R. Hanly and Elliot B. Koffman, Pearson, 2016.
- Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman, MIT Press, 1985.
- How to Design Programs by Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi, MIT Press, 2018.
- ANSI/ISO 9899-1990, American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 1990 (C89).
- ISO/IEC 9899:1999. International Standard for Programming Languages C (ISO/IEC 9899) by American National Standards Institute, Information Technology Industry Council, 2000 (C99).
- INCITS/ISO/IEC 9899-2011. American National Standard for Programming Languages 'C' by American National Standards Institute, Information Technology Industry Council, 2012 (C11).