ASSIGNMENT 1 (AIDS 212)

- Find a root of the equation $x^{3}-4 x-9=0$ using bisection method in four stages.
- Find a root of the equation $x=e^{-x}$, correct to three decimal places by secant method.
- Solve the equation $\log x=\cos x$ to five decimals by Newton-Raphson Method.
- Using regula-falsi method, compute the real root of $x e^{x}=2$.
- Apply the Brent method to find a root of the function $f(x)=x^{3}-6 x^{2}+11 x-6$. Choose the interval $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs. Perform three iterations and provide the estimated root.

ASSIGNMENT 2 (AIDS 212)

- For what value of k the equations

$$
\begin{aligned}
& x+y+z=1 \\
& 2 x+y+4 z=k \\
& 4 x+y+10 z=k^{2}
\end{aligned}
$$

have a solution and solve them completely in each case?

- Solve the following system by Gauss's Elimination Method.

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

- Decompose the matrix A into form $L L^{T}$ using Cholesky method where

$$
A=\left[\begin{array}{ccc}
9 & -3 & 3 \\
-3 & 13 & -5 \\
3 & -5 & 15
\end{array}\right]
$$

- Apply Gauss - Seidal iteration method to solve the following equations:
$54 x+y+z=110 ;$
$2 x+15 y+6 z=72 ;$
$-x+6 y+27 z=85$
- Obtain by power method, the numerically dominant eigen values and eigen vector of the matrix

$$
A=\left[\begin{array}{ccc}
15 & -4 & -3 \\
-10 & 12 & -6 \\
-20 & 4 & -2
\end{array}\right]
$$

ASSIGNMENT 3 (AIDS 212)

1.Estimate the following by Trapezoidal Rule:
(i) $\int_{1}^{3} \frac{d x}{x} \quad \mathrm{n}=8$
(ii) $\int_{1}^{2} \frac{e^{x} d x}{x} \quad \mathrm{n}=4$
2.

Use Simpson's $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking 7 ordinates.
3.

The velocity $\mathrm{v}(\mathrm{km} / \mathrm{min})$ of a moped which starts from rest, is given at fixed intervals of time $t(\mathrm{~min})$ as follows:

$t:$	2	4	6	8	10	12	14	16	18	20
$v:$	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.
4.

Solve all Simpson's $1 / 3^{\text {rd }}$ problems by using Simpson's $3 / 8^{\text {th }}$ rule.

5.

Evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ using Gauss formula for $\mathrm{n}=2$ and $\mathrm{n}=3$.
6.

Using three point Gaussian quadrature formula, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$

ASSIGNMENT 4 (AIDS 212)

1.

Using Euler's method, find an approximate value of y corresponding to $\mathrm{x}=1$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
2.

Given $\frac{d y}{d x}=y-x / y+x$ with initial condition $y=1$ at $x=0$; find y for $x=$ 0.1 by Euler's method.
3.

Apply Runge - Kutta fourth order method to find an approximate value of y when $x=0.2$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.
4. Write differences between Initial value problems and Boundary value problems

5.

Consider the following partial differential equations (PDEs):

1. $u_{t t}-3 u_{x x}+2 u_{y y}=0$
2. $u_{x x}+u_{y y}+u_{t}=0$
3. $u_{t t}+4 u_{x x}+9 u_{y y}=0$
4. $u_{x x}-u_{y y}+2 u_{t}=0$
5. $u_{t t}+u_{x x}+u_{y y}-4 u_{t}=0$

For each PDE, classify it as hyperbolic, elliptic, or parabolic.

